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vii
Acoustics and Psychoacoustics continues to be adopted as a core text in 
courses all around the world; it has come on a long way since it was first 
published in 1996. We receive a number of emails from readers asking ques-
tions relating to material presented and we always try to provide appropriate 
answers. Such queries are always welcomed; indeed, much of the substance 
of the revisions made in the 2nd edition was based on this important feed-
back for which we are very grateful. The main change in the 3rd edition was 
the inclusion of the audio compact disc (CD) to provide recorded material for 
use in learning, and we understand from feedback received that this was a 
very welcome addition to the book.

In addition to minor modifications that have been made in this 4th edition, 
there is a major change to the final chapter which is now, we believe, better 
focused as the book’s concluding material. It takes Applications of acoustics 
and psychoacoustics as its theme and it explores the underlying principles of 
devices, procedures and systems that underpin practical work in the area of 
acoustics and psychoacoustics. The original material is essentially retained 
but reorganized to enable the inclusion of new material including: new room 
acoustic design examples, hearing testing in practice, the principles of psy-
choacoustic testing, noise reducing headphones, “mosquito” units and “teen 
buzz” ring tones (demonstrated on a new audio on the CD—track 79). We 
hope not only that these practical examples will provide useful insights into 
existing practical applications of the subject, but also that they will trigger 
creative thinking in tomorrow’s readers who might be responsible for the 
invention of new devices, procedures and systems for the future.

The musical and studio side of the field has not been neglected and  
additional material has been added on the following: pipe organs—to take 
into account the full range of acoustic harmonic synthesis that they achieve 
around the globe through the inclusion of what we believe to be all stop  
footages which are found on today’s instruments (enhanced Table 5.1); unac-
companied (a capella) singing performance and how overall tuning can drift 
due to the tuning system that a capella singers adopt (new Section 4.5.3); and 
timbral descriptions that are often used in the studio and how they relate to 
frequency (at the end of Section 5.3.2). A new version of track 7 on the audio 
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CD relating to tuning systems is included which we believe provides a clearer 
demonstration of the differences between just and equal temperaments.

Other generally more minor changes have been made throughout the book 
mainly in response to reader and reviewer feedback, and we would like to 
thank everyone who has provided such helpful and supportive comments 
and suggestions. A book like this builds up a community of readers and we 
are humbled but happy to receive remarks that lead to improved clarity in 
the material offered.

Creativity is at the heart of successful work in fields such as acoustics,  
psychoacoustics, studio engineering, audio engineering, music technology, 
music composition and music performance. What we hear with our ears 
is an essential aspect of human communication whether by speech, music 
or other sounds. A basic understanding of acoustics and psychoacoustics 
is therefore essential if progress is to be made by tomorrow’s generation, 
and this is the spirit in which we offer this 4th edition of Acoustics and 
Psychoacoustics.

David M. Howard (York, U.K.) and Jamie A.S. Angus (Salford, U.K.)
June 2009
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Chapter �: Introduction to Sound2
Sound is something most people take for granted. Our environment is full 
of noises, which we have been exposed to from before birth. What is sound, 
how does it propagate, and how can it be quantified? The purpose of this 
chapter is to introduce the reader to the basic elements of sound, the way 
it propagates, and related topics. This will help us to understand both the 
nature of sound and its behavior in a variety of acoustic contexts, and allow 
us to understand both the operation of musical instruments and the inter-
action of sound with our hearing.

�.� preSSure WaveS aNd SOuNd traNSmISSION

At a physical level sound is simply a mechanical disturbance of the 
medium, which may be air, or a solid, liquid or other gas. However, such a 
simplistic description is not very useful as it provides no information about 
the way this disturbance travels, or any of its characteristics other than the 
requirement for a medium in order for it to propagate. What is required is 
a more accurate description which can be used to make predictions of the 
behavior of sound in a variety of contexts.
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31.1 Pressure Waves and Sound Transmission
�.�.� the nature of sound waves
Consider the simple mechanical model of the propagation of sound 
through some physical medium, shown in Figure 1.1. This shows a simple  
one-dimensional model of a physical medium, such as air, which we call the 
golf ball and spring model because it consists of a series of masses, e.g., golf 
balls, connected together by springs. The golf balls represent the point masses 
of the molecules in a real material, and the springs represent the intermolecu-
lar forces between them. If the golf ball at the end is pushed toward the others 
then the spring linking it to the next golf ball will be compressed and will push 
at the next golf ball in the line, which will compress the next spring, and so on.

Because of the mass of the golf balls there will be a time lag before they 
start moving from the action of the connecting springs. This means that 
the disturbance caused by moving the first golf ball will take some time to 
travel down to the other end. If the golf ball at the beginning is returned 
to its original position the whole process just described will happen again, 
except that the golf balls will be pulled rather than pushed and the connect-
ing springs will have to expand rather than compress. At the end of all this 
the system will end up with the golf balls having the same average spacing 
that they had before they were pushed and pulled.

The region where the golf balls are pushed together is known as a “com-
pression” whereas the region where they are pulled apart is known as a “rar-
efaction,” and the golf balls themselves are the propagating medium. In a 
real propagating medium, such as air, a disturbance would naturally consist 
of either a compression followed by a rarefaction or a rarefaction followed by 
a compression in order to allow the medium to return to its normal state. A 
picture of what happens is shown in Figure 1.2. Because of the way the dis-
turbance moves—the golf balls are pushed and pulled in the direction of the 
disturbance’s travel—this type of propagation is known as a “longitudinal 
wave.” Sound waves are therefore longitudinal waves which propagate via a 
series of compressions and rarefactions in a medium, usually air.

�.�.2 the velocity of sound waves
The speed at which a disturbance, of either kind, moves down the “string” 
of connected golf balls will depend on two things:

n The mass of the golf balls: the mass affects the speed of disturbance 
propagation because a golf ball with more mass will take longer to 

FIgure �.� Golf ball and spring model of a sound propagating material.



Chapter �: Introduction to Sound4
start and stop moving. In real materials the density of the material 
determines the effective mass of the golf balls. A higher density gives 
a higher effective mass and so the propagation will travel more slowly.

n The strength of the springs: the strength of the springs connecting 
the golf balls together will also affect the speed of disturbance 
propagation because a stronger spring will be able to push harder 
on the next golf ball and so accelerate it faster. In real materials 

FIgure �.2 Golf ball and spring model of a sound pulse propagating in a material.
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the strength of the springs is equivalent to the elastic modulus 
of the material, which is also known as the “Young’s modulus” 
of the material. A higher elastic modulus in the material implies 
a stiffer spring and therefore a faster speed of disturbance 
propagation.

For longitudinal waves in solids, the speed of propagation is only 
affected by the density and Young’s modulus of the material, and this can 
be simply calculated from the following equation:

 
c

E


ρ  

(1.1)

where c  the speed in meters per second (ms1)
  the density of the material (in kg m3)

         and E  the Young’s modulus of the material (in N m2)

However, although the density of a solid is independent of the direction of 
propagation in a solid, the Young’s modulus may not be. For example, brass 
will have a Young’s modulus which is independent of direction because 
it is homogeneous, whereas wood will have a different Young’s modulus 
depending on whether it is measured across the grain or with the grain. 
Thus brass will propagate a disturbance with a velocity which is indepen-
dent of direction, but in wood the velocity will depend on whether the dis-
turbance is traveling with the grain or across it. To make this clearer let us 
consider an example.

This variation of the speed of sound in materials such as wood can 
affect the acoustics of musical instruments made of wood and has partic-
ular implications for the design of loudspeaker cabinets, which are often 
made of wood. In general, loudspeaker manufacturers choose processed 
woods, such as plywood or MDF (medium density fiberboard), which have 
a Young’s modulus that is independent of direction.

�.�.3 the velocity of sound in air
So far the speed of sound in solids has been considered. However, sound is 
more usually considered as something that propagates through air, and for 
music this is the normal medium for sound propagation. Unfortunately air 
does not have a Young’s modulus so Equation 1.1 cannot be applied directly, 
even though the same mechanisms for sound propagation are involved. Air is 
springy, as anyone who has held their finger over a bicycle pump and pushed 
the plunger will tell you, so a means of obtaining something equivalent to 

Young’s modulus 
is a measure of the 
“springiness” of 
a material. A high 
Young’s modulus 
means the material 
needs more force 
to compress it. 
It is measured in 
newtons per square 
meter (N m2).

c is the accepted 
symbol for velocity, 
yes it’s strange, 
but v is used for 
other things by 
physicists. Density 
is the mass per 
unit volume. It 
is measured in 
kilograms per cubic 
meter (kg m3).

 is the square 
root symbol. It 
means “take the 
square root of 
whatever is inside 
it.”

A newton (N) is a 
measure of force.
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Young’s modulus for air is required. This can be done by considering the adi-
abatic (meaning no heat transfer) gas law given by:

 PV γ  constant  (1.2)

where P  the pressure of the gas (in N m2)
V  the volume of the gas (in m3)

   and   is a constant which depends on the gas (1.4 for air)

The adiabatic gas law equation is used because the disturbance moves so 
quickly that there is no time for heat to transfer from the compressions 
or rarefactions. Equation 1.2 gives a relationship between the pressure and 
volume of a gas which can be used to determine the strength of the air 
spring, or the equivalent to Young’s modulus for air, which is given by:

 
E Pgas  γ

 
(1.3)

The density of a gas is given by:

 
ρgas  

m
V

PM
RT  

(1.4)

exampLe �.�

Calculate the speed of sound in steel and in beech wood.
The density of steel is 7800 kg m3, and its Young’s modulus is 2.1  1011 N m2, so the 
speed of sound in steel is given by:

 
csteel  ms


 2 1 10

7800
5189

11
1.

 
The density of beech wood is 680 kg m3, and its Young’s modulus is 14  109 N 

m2 along the grain and 0.88  109 N m2 across the grain. This means that the speed 
of sound is different in the two directions and they are given by:

 
cbeech along the g  msrain 


 14 10

680
4537

9
1

 

and

 
cbeech across the grain  ms


 0 88 10

680
1138

9
1.

 
Thus the speed of sound in beech is four times faster along the grain than across the 

grain.

s1 means per 
second.

Pressure is the 
force, in newtons, 
exerted by a gas 
on a surface. This 
arises because 
the gas molecules 
“bounce” off 
the surface. It 
is measured in 
newtons per square 
meter (N m2).

The molecular 
mass of a gas is 
approximately 
equal to the total 
number of protons 
and neutrons 
in the molecule 
expressed in grams 
(g). Molecular 
mass expressed 
in this way always 
contains the 
same number 
of molecules 
(6.022  1023). 
This number of 
molecules is known 
as a “mole” (mol).
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where m  the mass of the gas (in kg)
M  the molecular mass of the gas (in kg molethe molecular mass of the gas (in kg mole1)
R  the gas constant (�.31�� ��the gas constant (�.31 �� ��1 mole1)

and T  the absolute temperature (in ��)the absolute temperature (in ��)

Equations 1.3 and 1.4 can be used to give the equation for the speed of 
sound in air, which is:

 

c
E P

PM
RT

RT
Mgas

gas

gas
  

ρ
γ γ








 

(1.5)

Equation 1.5 is important because it shows that the speed of sound in a gas 
is not affected by pressure. Instead, the speed of sound is strongly affected 
by the absolute temperature and the molecular weight of the gas. Thus we 
would expect the speed of sound in a light gas, such as helium, to be faster 
than that in a heavy gas, such as carbon dioxide, and, in air, to be somewhere 
in between. For air we can calculate the speed of sound as follows.

exampLe �.2

Calculate the speed of sound in air at 0°C and 20°C.
The composition of air is 21% oxygen (O2), 78% nitrogen (N2), 1% argon (Ar), and min-
ute traces of other gases. This gives the molecular weight of air as:

M  21% x 16  2  78% x 14  2  1% x 18 M  2.87  102 kg mole1

and

  1.4

R  8.31�� �� �� ��1 molemole1

which gives the speed of sound as:

 
c

T




 

1 4 8 31

2 87 10 2

. .

.   

 c T 20 1.  

Thus the speed of sound in air is dependent only on the square root of the absolute 
temperature, which can be obtained by adding 273 to the Celsius temperature; thus the 
speed of sound in air at 0°C and 20°C is:

 

c

c
0

1

20
1

20 1 273 0 332

20 1 273 20 344







  

  

C

C

 ( )  ms

 ( )  ms

.

.  
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The reason for the increase in the speed of sound as a function of tem-
perature is twofold. Firstly, as shown by Equation 1.4 which describes the 
density of an ideal gas, as the temperature rises the volume increases and, 
provided the pressure remains constant, the density decreases. Secondly, if  
the pressure does alter, its effect on the density is compensated for by an 
increase in the effective Young’s modulus for air, as given by Equation 1.3. 
In fact the dominant factor other than temperature affecting the speed of 
sound in a gas is the molecular weight of the gas. This is clearly different if 
the gas is different from air, for example helium. But the effective molecular 
weight can also be altered by the presence of water vapor, because the water 
molecules displace some of the air and, because they have a lower weight, 
this slightly increases the speed of sound compared with dry air.

Although the speed of sound in air is proportional to the square root 
of absolute temperature we can approximate this change over our normal 
temperature range by the linear equation:

 c t  331 3 0 6 1. .  ms  (1.6)

where t  the temperature of the air in °C

Therefore we can see that sound increases by about 0.6 ms1 for each °C 
rise in ambient temperature and this can have important consequences for 
the way in which sound propagates.

Table 1.1 gives the density, Young’s modulus and corresponding velocity 
of longitudinal waves for a variety of materials.

table �.�   Young’s modulus, densities and speeds of sound for some 
common materials

material Young’s modulus density Speed of
(N m2) (kg m3) sound (ms�)

Steel 2.10  1011 7800 5189

Aluminum 6.90  1010 2720 5037

Lead 1.70  1010 11400 1221

Glass 6.00  1010 2400 5000

Concrete 3.00  1010 2400 3536

Water 2.30  109 1000 1517

Air (at 20°C) 1.43  105 1.21 344

Beech wood (along the grain) 1.40  1010 680 4537

Beech wood (across the grain) 8.80  108 680 1138
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�.�.4 transverse and other types of wave
Once one has a material with boundaries that are able to move, for exam-
ple a guitar string, a bar, or the surface of the sea, then types of wave other 
than longitudinal waves occur.

The simplest alternative type of wave is the transverse wave, which occurs 
on a vibrating guitar string. In a transverse wave, instead of being pushed 
and pulled toward each other, the golf ball (referred to earlier) is moved  
from side to side—this causes a lateral disturbance to be propagated, due to 
the forces exerted by the springs on the golf balls, as described earlier. This 
type of wave is known as a “transverse wave” and is often found in the vibra-
tions of parts of musical instruments, such as strings, or thin membranes.

�.�.5 the velocity of transverse waves
The velocity of transverse vibrations is affected by factors other than just 
the material properties. For example, the static spring tension will have a 
significant effect on the acceleration of the golf balls in the golf ball and 
spring model. If the tension is low then the force which restores the golf 
balls back to their original position will be lower and so the wave will prop-
agate more slowly than when the tension is higher. This allows us to adjust 
the velocity of transverse waves, which is very useful for tuning musical 
instruments.

However, the transverse vibration of strings is quite important for a 
number of musical instruments; the velocity of a transverse wave in a piece 
of string can be calculated by the following equation:

 

c
T

transverse

where the mass per unit length (in kgm
a



 

µ

µ 1)
nnd the tension of the string (in NT  )  

(1.7)

This equation, although it is derived assuming an infinitely thin string, 
is applicable to most strings that one is likely to meet in practice. But it 
is applicable to only pure transverse vibration; it does not apply to other 
modes of vibration. However, transverse waves are the dominant form 
of vibration for thin strings. The main error in Equation 1.7 is due to 
the inherent stiffness in real materials, which results in a slight increase 
in velocity with frequency. This effect does alter the timbre of percussive 
stringed instruments, like the piano or guitar, and gets stronger for thicker 
pieces of wire. So Equation 1.7 can be used for most practical purposes. Let 
us calculate the speed of a transverse vibration on a steel string.
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�.�.6 Waves in bars and panels
There are several different possible waves in three-dimensional objects. For 
example, there are different directions of vibration and in addition there are 
different forms, depending on whether opposing surfaces are vibrating in 
similar or contrary motion, such as transverse, longitudinal torsional, and 
others. As all of these different ways of moving will have different spring 
constants, they will be affected differently by external factors such as shape. 
This means that for any shape more complicated than a thin string, the 
velocity of propagation of transverse modes of vibration becomes extremely 
complicated. This becomes important when one considers the operation of 
percussion instruments.

There are three main types of wave in these structures: quasi-longitudinal, 
transverse shear, and bending (flexural)—the latter two are shown in Figures 
1.3 and 1.4. There are others, for example surface acoustic waves, like waves 
at sea and waves in earthquakes, that are combinations of longitudinal and 
transverse waves.

Quasi-longitudinal waves
The quasi-longitudinal waves are so called because they do result in some 
transverse motion, due to the finite thickness of the propagating medium. 
However, this effect is small and, for quasi-longitudinal waves in bars and 

exampLe �.3
Calculate the speed of a transverse vibration on a steel wire which is 0.8 mm in diameter 
(this could be a steel guitar string), and under 627 N of tension.
The mass per unit length is given by:

 

µ ρsteel steel   


 


( ) .
.

.πr 2
3 2

7800 3 14
0 8 10

2
3 92











110 3 1 kg m

 

The speed of the transverse wave is thus:

 
csteel transverse ms






627

3 92 10
400

3
1

.  

This is considerably slower than a longitudinal wave in the same material; generally  
transverse waves propagate more slowly than longitudinal ones in a given material.
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plates, the density and Young’s modulus of the material affect the speed of 
propagation in the same way as pure longitudinal waves. The propagation 
velocity can therefore be simply calculated from Equation 1.1.

Transverse shear waves
Transverse shear waves are waves that have a purely transverse (shear) dis-
placement within a solid. It would be helpful to have a definition and/or 
description of “shear.” Unlike simple transverse waves on a thin string they 
do not rely on a restoring force due to tension, but on the shear force of the 
solid. Solids can resist static shear deformation and this is encapsulated in 
the shear modulus, which is defined as the ratio of shear stress to shear 
strain. The shear modulus (G) of a material is related to its Young’s modu-
lus via its Poisson ratio (v). This ratio is defined as the ratio of the magni-
tudes of the lateral strain to the longitudinal strain and is typically between 
0.25 for something like glass to 0.5 for something like hard rubber. It arises 
because there is a change in lateral dimension, and hence lateral strain, 
when stress is applied in the longitudinal direction (Poisson contraction). 
The equation linking shear modulus to Young’s modulus is:

 

G
E

v

G






2 1( )
=where the shear modulus of the material (in Nm 22

2

)

)E
v
=
=

the Young’s modulus of the material (in Nm
and th



ee Poisson ratio of the material  

(1.�)

FIgure �.3
A transverse shear wave.

FIgure �.4
A bending (flexural) wave.

A shear 
displacement is 
what happens if 
you cut paper with 
scissors, or tear it. 
You are applying 
a force at right 
angles and making 
one part of the 
material slip, or 
shear, with respect 
to the other.
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Thus for transverse shear waves the velocity of propagation is given by:

 

c
G

G

transverse shear 

where the shear modulus of the mater





ρ

iial (in Nm

 and the density of the material (in kgm





2

3

)

ρ ))  

(1.9)

This equation, like the earlier one for quasi-longitudinal waves, gives a 
phase velocity that is independent of frequency. Comparing Equations 1.1 
and 1.9 also shows that the ratio of the two wave velocities is given by:

 

c
c c

transverse shear

longitudinal

 

-quasi




1
2 1( )

 

(1.10)

Thus the transverse shear wave speed is smaller than that of quasi- 
longitudinal waves. Typically the ratio of speeds is about 0.6 for homoge-
neous materials.

It is difficult to generate pure shear waves in a plate via the use of 
applied forces because in practice an applied force results in both lateral 
and longitudinal displacements. This has the effect of launching bending 
(flexural) waves into the plate.  

Bending (flexural) waves
Bending (flexural) waves are neither pure longitudinal nor pure transverse 
waves. They are instead a combination of the two. Examination of Figure 1.4  
shows that in addition to the transverse motion there is also longitudinal 
motion that increases to a maximum at the two surfaces. Also, on either 
side of the center line of the bar the longitudinal motions are in anti-
phase. The net result is a rotation about the midpoint, the neutral plane, 
in addition to the transverse component. The formal analysis of this sys-
tem is complex, as in principle both bending and shear forces are involved. 
However, provided the shear forces’ contribution to transverse displacement 
is small compared to that of the bending forces (a common occurrence), the 
velocity of a bending wave in a thin plate or bar is given by:

 

v
D
m

D

bending 



ω







1
4

where the bending stiffness of tthe plate (in Nm)

and the mass per unit area (in kgm 2m   )  

(1.11)

“Phase velocity” is 
the correct term for 
what we have, so 
far, simply called 
velocity. It’s the 
speed at which a 
single frequency 
travels through the 
medium. It’s called 
phase velocity 
because it describes 
how fast a particular 
part of the sine 
wave’s phase, e.g., 
the crest or zero 
crossing point, 
travels through 
the medium. It is 
given a distinct 
name because in 
dispersive media the 
phase velocity varies 
with frequency. 
This gives rise 
to two different 
velocity measures: 
The phase velocity 
for the individual 
frequencies and the 
group velocity for 
the envelope of the 
signal.

The bending stiff-
ness of a plate is:

D
Eh

v
D






3

212 1( )
where the bending 

stiffness of 
the plate 
(inn Nm)
the thickness 
of the plate 
(in m)
the Young’s 
mod

h

E




uulus of 

the material 
(in Nm )

and the Poisson 
ratio of 





2

v
tthe 

material
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Equation 1.11 is significantly different from that for quasi-longitudinal and 
transverse shear waves. In particular the velocity is now frequency depen-
dent, and increases with frequency. This results in dispersive propagation of 
waves with different frequencies traveling at different velocities. Therefore 
waveshape is not preserved in bending wave propagation. One can hear the 
effect of this if one listens to the “chirp” sound emitted by ice covering a 
pond when hit by a thrown rock. The dispersion and the fourth root arise 
because, unlike quasi-longitudinal and transverse shear waves, the spatial 
derivatives in the wave equation are fourth order instead of second order 
because the bending wave is an amalgam of longitudinal and transverse 
waves.

A major assumption behind Equation 1.11 is that the shear contribution 
to the lateral displacement is small. This is likely to be true if the radius  
of the bend is large with respect to the thickness of the plate, that is, at  
long wavelengths. However, when the radius of the bend is of a similar 
size to the thickness, this condition is no longer satisfied and the wave 
propagated asymptotically approaches that of a transverse shear wave. 
This gives an upper limit on the phase velocity of a bending wave, which 
is equal to that of the transverse shear wave in the material. The ratio 
between the shear and bending contributions to transverse displacement is 
approximately:

 

contribution
contribution

hshear

bending bending
















2

where the thickness of the plate
and the a

h 

 bending w vvelength of the bending wave
 

(1.12)

From Equation 1.12 the contribution of the shear contribution is less than 
3% when bending  6h. So there is an upper frequency limit. Figure 1.5 
shows a comparison of the velocity of the different kinds of waves as a 
function of frequency for an aluminum plate that is 6 cm thick.

From Figure 1.5 we can see that both the quasi-longitudinal and trans-
verse shear waves in bars and plates are non-dispersive. That is, their phase 
velocity is independent of frequency. This means that they also have a fre-
quency independent group velocity and therefore preserve the waveshape of 
a sound wave containing many frequency components.

However, bending waves are dispersive. That is, their phase velocity is 
dependent on frequency. This means that they also have a frequency depen-
dent group velocity and therefore do not preserve the waveshape of a sound 
wave containing many frequency components.
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�.�.7 the wavelength and frequency of sound waves
So far we have only considered the propagation of a single disturbance 
through the golf ball and spring model and we have seen that, in this case, 
the disturbance travels at a constant velocity that is dependent only on the 
characteristics of the medium. Thus any other type of disturbance, such 
as a periodic one, would also travel at a constant speed. Figure 1.6 shows 
the golf ball and spring model being excited by a pin attached to a wheel 
rotating at a constant rate. This will produce a pressure variation as a func-
tion of time that is proportional to the sine of the angle of rotation. This is 
known as a “sinusoidal excitation” and produces a sine wave. It is impor-
tant because it represents the simplest form of periodic excitation. As we 
shall see later in the chapter, more complicated waveforms can always be 
described in terms of these simpler sine waves.

Sine waves have three parameters: their amplitude, rate of rotation or 
frequency, and their starting position or phase. The frequency used to be 
expressed in units of cycles per second, reflecting the origin of the wave-
form, but it is now measured in the equivalent units of hertz (Hz). This 
type of excitation generates a traveling sine wave disturbance down the 
model, where the compressions and rarefactions are periodic. Because  
the sine wave propagates at a given velocity, a length can be assigned to the 
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distance between the repeats of the compressions or rarefactions, as shown 
in Figure 1.7. Furthermore, because the velocity is constant, the distance 
between these repeats will be inversely proportional to the rate of varia-
tion of the sine wave, known as its “frequency.” The distance between the 
repeats is an important acoustical quantity and is called the wavelength (). 
Because the wavelength and frequency are linked together by the velocity, 
it is possible to calculate one of the quantities given the knowledge of two 
others using the following equation:

 

c f

c
f



 


where the velocity of sound in the medium (in ms 1)

 the frequency of the sound (in Hz,  Hz  cycle per seco1 1 nnd
and the wavelength of the sound in the medium (in m

)
)    

  

(1.13)

This equation can be used to calculate the frequency given the wave-
length, wavelength given the frequency, and even the speed of sound in the 
medium, given the frequency and wavelength. It is applicable to both longi-
tudinal and transverse waves.
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In acoustics the wavelength is often used as the “ruler” for measuring 
length, rather than meters, feet or furlongs, because many of the effects of 
real objects, such as rooms or obstacles, on sound waves are dependent on 
the wavelength.
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exampLe �.4

Calculate the wavelength of sound being propagated in air at 20°C, at 20 hz and 
20 khz.
For air the speed of sound at 20°C is 344 ms1 (see Example 1.2); thus the wavelengths 
at the two frequencies are given by:

 
 

c
f  

which gives:

 
  

344
20

17 2 20. m for  Hz
 

and

 
 




344

20 10
1 72 20

3
.  cm for  kHz

 

These two frequencies correspond to the extremes of the audio frequency range so 
one can see that the range of wavelength sizes involved is very large!
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�.�.8 the wavenumber of sound waves
Sometimes it is also useful to use a quantity called the wavenumber that 
describes how much the phase of the wave changes in a given distance. 
Again it is a form of “ruler” that is in units of radians per meter (rad m1); 
most physical objects need to have a phase shift of at least a radian across 
their physical size before they will really interact with a sound wave.

The wavenumber of a sound wave is given by:

 

k
c

k







ω

ω
where the wavenumber of the wave

the angular frequenncy of the wave
and the phase velocity of the wavec   

(1.14)

This is especially useful as it encapsulates any dispersive effects, and changes 
in wave velocity with frequency, and can be used directly to calculate various 
aspects of wave propagation in, and acoustic radiation from, for example, 
plates.

As an example, the equations for wavenumber for transverse shear and 
bending waves in a plate are:
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Gtransverse shear  ω
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(1.15)
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(1.16)

Two points are of note from Equations 1.15 and 1.16. The first is that the 
wavenumber of lateral shear waves is proportional to frequency, just as one 
would expect from a non-dispersive wave. However, for a bending wave 

exampLe �.5

Calculate the frequency of sound with a wavelength of 34 cm in air at 20°C.
The frequency is given by:

 
f

c
  


344
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1012
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Hz
 

A radian is a 
measure of angle, 
equal to 180/ 
degrees, which is 
about 57.3°.
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the wavenumber rises only as the square root of frequency. In both cases 
the coefficient is inversely proportional to the phase velocity so a low slope 
implies a high phase velocity. It is often helpful to plot wavenumber versus 
angular frequency in a dispersion diagram. Figure 1.� shows the dispersion 
curves for different wave types in an aluminum plate along with the disper-
sion curve for sound in air.

�.�.9  the relationship between pressure, velocity  
and impedance in sound waves

Another aspect of a propagating wave to consider is the movement of the 
molecules in the medium which is carrying it. The wave can be seen as a series 
of compressions and rarefactions which are traveling through the medium. 
The force required to effect the displacement—a combination of both compres-
sion and acceleration—forms the pressure component of the wave.

In order for the compressions and rarefactions to occur, the molecules 
must move closer together or further apart. Movement implies velocity, 
so there must be a velocity component which is associated with the dis-
placement component of the sound wave. This behavior can be observed 
in the golf ball model for sound propagation described earlier. In order for 
the golf balls to get closer for compression they have some velocity to move 
toward each other. This velocity will become zero when the compression 
has reached its peak, because at this point the molecules will be stationary.  
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Then the golf balls will start moving with a velocity away from each other 
in order to get to the rarefacted state. Again the velocity toward the golf 
balls will become zero at the trough of the rarefaction. The velocity does 
not switch instantly from one direction to another, due to the inertia of 
the molecules involved; instead it accelerates smoothly from a stationary 
to a moving state and back again. The velocity component reaches its peak 
between the compressions and rarefactions, and for a sine wave displace-
ment component the associated velocity component is a cosine.

Figure 1.9 shows a sine wave propagating in the golf ball model with plots 
of the associated components. The force required to accelerate the molecules 
forms the pressure component of the wave. This is associated with the veloc-
ity component of the propagating wave and therefore is in phase with it. That 
is, if the velocity component is a cosine then the pressure component will 
also be a cosine. Thus, a sound wave has both pressure and velocity compo-
nents that travel through the medium at the same speed.

Air pressure acts in all directions at the same time and therefore for 
sound it can be considered to be a scalar quantity without direction; we can 
therefore talk about pressure at a point and not as a force acting in a partic-
ular direction. Velocity on the other hand must have direction; things move 
from one position to another. It is the velocity component which gives a 
sound wave its direction.

The velocity and pressure components of a sound wave are also related 
to each other in terms of the density and springiness of the propagating 
medium. A propagating medium which has a low density and weak springs 
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would have a higher amplitude in its velocity component for a given pres-
sure amplitude compared with a medium which is denser and has stronger 
springs. For a wave some distance away from the source and any boundar-
ies, this relationship can be expressed using the following equation:

 

Pressure component amplitude
Velocity component amplitude

C oonstant Zacoustic 
p
U  

(1.17)

 

where the pressure component amplitude
the volume veloc

p
U



 iity component amplitude
and the acoustic impedanacousticZ  cce  

This constant is known as the “acoustic impedance” and is analogous to 
the resistance (or impedance) of an electrical circuit.

The amplitude of the pressure component is a function of the springi-
ness (Young’s modulus) of the material and the volume velocity component 
is a function of the density. This allows us to calculate the acoustic imped-
ance using the Young’s modulus and density with the following equation:

 Z Eacoustic  ρ  

However, the velocity of sound in the medium, usually referred to as c, is 
also dependent on the Young’s modulus and density so the above equation 
is often expressed as:
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  air at 20 C  

(1.17a)

Note that the acoustic impedance for a wave in free space is also dependent 
only on the characteristics of the propagating medium.

However, if the wave is traveling down a tube whose dimensions are 
smaller than a wavelength, then the impedance predicted by Equation 1.17 
is modified by the tube’s area to give:

 
Z

c
Sacoustic tube

tube


ρ

 
(1.17b)

 where the tube areatubeS   

m2 means per 
square meter.
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This means that for bounded waves the impedance depends on the surface 
area within the bounding structure and so will change as the area changes. 
As we shall see later, changes in impedance can cause reflections. This 
effect is important in the design and function of many musical instruments 
as discussed in Chapter 4.

�.2 SOuNd INteNSItY, pOWer aNd preSSure LeveL

The energy of a sound wave is a measure of the amount of sound present. 
However, in general we are more interested in the rate of energy transfer 
rather than the total energy transferred. Therefore we are interested in the 
amount of energy transferred per unit of time, that is, the number of joules 
per second (watts) that propagate. Sound is also a three-dimensional quan-
tity and so a sound wave will occupy space. Because of this it is helpful 
to characterize the rate of energy transfer with respect to area, that is, in 
terms of watts per unit area. This gives a quantity known as the “sound 
intensity,” which is a measure of the power density of a sound wave propa-
gating in a particular direction, as shown in Figure 1.10.

�.2.� Sound intensity level
The sound intensity represents the flow of energy through a unit area. In 
other words it represents the watts per unit area from a sound source and 
this means that it can be related to the sound power level by dividing it by 
the radiating area of the sound source. As discussed earlier, sound inten-
sity has a direction which is perpendicular to the area that the energy is 
flowing through; see Figure 1.10. The sound intensity of real sound sources 

Area

FIgure �.�0
Sound intensity.
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can vary over a range which is greater than one million-million (1012) to 
one. Because of this, and because of the way we perceive the loudness of a 
sound, the sound intensity level is usually expressed on a logarithmic scale. 
This scale is based on the ratio of the actual power density to a reference 
intensity of 1 picowatt per square meter (1012 W m2). Thus the sound 
intensity level (SIL) is defined as:

 
SIL

I
I

 10 10log  actual

ref











 (1.1�)

 

where the actual sound power density level (in W mactualI  



2

110

)

and the reference sound power density level (refI 22 2 W m )

 

The factor of 10 arises because this makes the result a number in which 
an integer change is approximately equal to the smallest change that can 
be perceived by the human ear. A factor of 10 change in the power density 
ratio is called the bel; in Equation 1.1� this would result in a change of 10 
in the outcome. The integer unit that results from Equation 1.1� is there-
fore called the decibel (dB). It represents a 1010  change in the power den-
sity ratio, that is, a ratio of about 1.26.

The symbol for 
power in watts is W.

exampLe �.6

a loudspeaker with an effective diameter of 25 cm radiates 20 mW. What is the 
sound intensity level at the loudspeaker?
Sound intensity is the power per unit area. Firstly, we must work out the radiating area of 
the loudspeaker which is:
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Then we can work out the sound intensity as:
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This result can be substituted into Equation 1.19 to give the sound intensity level, 
which is:
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�.2.2 Sound power level
The sound power level is a measure of the total power radiated in all direc-
tions by a source of sound and it is often given the abbreviation SWL, or 
sometimes PWL. The sound power level is also expressed as the logarithm 
of a ratio in decibels and can be calculated from the ratio of the actual 
power level to a reference level of 1 picowatt (1012 W) as follows:
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w
w

 10 10log actual
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(1.19)

 

where the actual sound power level (in watts)

and 
actualw

w



rref the reference sound power level (  W) 10 12
 

The sound power level is useful for comparing the total acoustic power 
radiated by objects, for example ones which generate unwanted noises. It 
has the advantage of not depending on the acoustic context, as we shall see 
in Chapter 6. Note that, unlike the sound intensity, the sound power has 
no particular direction.

�.2.3 Sound pressure level
The sound intensity is one way of measuring and describing the ampli-
tude of a sound wave at a particular point. However, although it is use-
ful theoretically, and can be measured, it is not the usual quantity used 
when describing the amplitude of a sound. Other measures could be either 
the amplitude of the pressure, or the associated velocity component of the 

exampLe �.7

Calculate the SWL for a source which radiates a total of � watt.
Substituting into Equation 1.19 gives:
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A sound pressure level of one watt would be a very loud sound, if you were to receive 
all the power. However, in most situations the listener would only be subjected to a small 
proportion of this power.
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sound wave. Because human ears are sensitive to pressure, which will be 
described in Chapter 2, and, because it is easier to measure, pressure is 
used as a measure of the amplitude of the sound wave. This gives a quan-
tity which is known as the “sound pressure,” which is the root mean square 
(rms) pressure of a sound wave at a particular point. The sound pressure 
for real sound sources can vary from less than 20 micropascals (20  Pa or 
20  106 Pa) to greater than 20 pascals (20 Pa). Note that 1 Pa equals a 
pressure of 1 newton per square meter (1 N m2).

These two pressures broadly correspond to the threshold of hearing 
(20  Pa) and the threshold of pain (20 Pa) for a human being, at a frequency 
of 1 kHz, respectively. Thus real sounds can vary over a range of pressure 
amplitudes which is greater than a million to one. Because of this, and 
because of the way we perceive sound, the sound pressure level is also usu-
ally expressed on a logarithmic scale. This scale is based on the ratio of 
the actual sound pressure to the notional threshold of hearing at 1 kHz of 
20 Pa. Thus the sound pressure level (SPL) is defined as:
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(1.20)

 

where the actual pressure level (in Pa)
and th

actual

ref

p
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 ee reference pressure level (  Pa)20 µ  

The multiplier of 20 has a twofold purpose. The first is to make the result a 
number in which an integer change is approximately equal to the smallest 
change that can be perceived by the human ear. The second is to provide 
some equivalence to intensity measures of sound level as follows.

The intensity of an acoustic wave is given by the product of the volume 
velocity and pressure amplitude:

 Iacoustic  Up  (1.21)

 

where the pressure component amplitude
and the volume v
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 eelocity component amplitude  

However, the pressure and velocity component amplitudes are linked via 
the acoustic impedance (Equation 1.17) so the intensity can be calculated 
in terms of just the sound pressure and acoustic impedance by:
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(1.22)

The pascal (Pa) 
is a measure of 
pressure; 1 pascal 
(1 Pa) is equal to 1 
newton per square 
meter (1 Nm2).

Volume velocity is 
a measure of the 
velocity component 
of the wave. It is 
measured in units 
of liters per second 
(l s1).
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Therefore the sound intensity level could be calculated using the pressure 
component amplitude and the acoustic impedance using:
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(1.23)

This shows that the sound intensity is proportional to the square of the 
pressure, in the same way that electrical power is proportional to the square 
of the voltage. The operation of squaring the pressure can be converted into 
multiplication of the logarithm by a factor of two, which gives:

 

SIL
p

Z I
 20 10log

acoustic ref 












 

(1.24)

This equation is similar to Equation 1.20 except that the reference level is 
expressed differently. In fact, this equation shows that if the pressure refer-
ence level was calculated as

 
p Z Iref acoustic ref  (Pa)     416 10 20 4 1012 6.

 (1.25)

then the two ratios would be equivalent. The actual pressure reference level 
of 20  Pa is close enough to say that the two measures of sound level are 
broadly equivalent: SIL  SPL for a single sound wave a reasonable distance 
from the source and any boundaries. They can be equivalent because the 
sound pressure level is calculated at a single point and sound intensity is 
the power density from a sound source at the measurement point.

However, whereas the sound intensity level is the power density from 
a sound source at the measurement point, the sound pressure level is the 
sum of the sound pressure waves at the measurement point. If there is only 
a single pressure wave from the sound source at the measurement point, 
that is, there are no extra pressure waves due to reflections, the sound 
pressure level and the sound intensity level are approximately equivalent: 
SIL  SPL. This will be the case for sound waves in the atmosphere well 
away from any reflecting surfaces. It will not be true when there are addi-
tional pressure waves due to reflections, as might arise in any room or if 
the acoustic impedance changes. However, changes in level for both SIL 
and SPL will be the equivalent because if the sound intensity increases then 
the sound pressure at a point will also increase by the same proportion.  
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This will be true so long as nothing alters the number and proportions of the 
sound pressure waves arriving at the point at which the sound pressure is 
measured. Thus, a 10 dB change in SIL will result in a 10 dB change in SPL.

These different means of describing and measuring sound amplitudes 
can be confusing and one must be careful to ascertain which one is being 
used in a given context. In general, a reference to sound level implies that 
the SPL is being used because the pressure component can be measured 
easily and corresponds most closely to what we hear.

Let us calculate the SPLs for a variety of pressure levels.

�.3 addINg SOuNdS tOgether

So far we have only considered the amplitude of single sources of sound. 
However, in most practical situations more than one source of sound is 
present; these may result from other musical instruments or reflections 

exampLe �.8

Calculate the SpL for sound waves with rms pressure amplitudes of � pa, 2 pa 
and 2 pa.
Substituting the above values of pressure into Equation 1.20 gives:
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1 Pa is often used as a standard level for specifying microphone sensitivity and, as 
the above calculation shows, represents a loud sound.
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Doubling the pressure level results in a 6  dB increase in sound pressure level, and a 
tenfold increase in pressure level results in a 20  dB increase in SPL.
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If the actual level is less than the reference level then the result is a negative SPL. The 
decibel concept can also be applied to both sound intensity and the sound power of a source.
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from surfaces in a room. There are two different situations which must be 
considered when adding sound levels together.

n Correlated sound sources: In this situation the sound comes from 
several sources which are related. In order for this to happen the 
extra sources must be derived from a single source. This can happen 
in two ways. Firstly, the different sources may be related by a simple 
reflection, such as might arise from a nearby surface. If the delay is 
short then the delayed sound will be similar to the original and so 
it will be correlated with the primary sound source. Secondly, the 
sound may be derived from a common electrical source, such as a 
recording or a microphone, and then may be reproduced using several 
loudspeakers. Because the speakers are being fed the same signal, but 
are spatially disparate, they act like several related sources and so are 
correlated. Figure 1.11 shows two different situations.

n Uncorrelated sound sources: In this situation the sound comes 
from several sources which are unrelated. For example, it may come 
from two different instruments, or from the same source but with 
a considerable delay due to reflections. In the first case the different 
instruments will be generating different waveforms and at different 
frequencies. Even when the same instruments play in unison, these 
differences will occur. In the second case, although the additional 
sound source comes from the primary one and so could be expected 
to be related to it, the delay will mean that the waveform from the 
additional source will no longer be the same. This is because in the 
intervening time, due to the delay, the primary source of the sound will 

Correlation due to reflection Correlation due to multiple sources

FIgure �.��
Addition of correlated 
sources.
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have changed in pitch, amplitude and waveshape. Because the delayed 
wave is different it appears to be unrelated to the original source and so 
is uncorrelated with it. Figure 1.12 shows two possibilities.

�.3.� the level when correlated sounds add
Sound levels add together differently depending on whether they are cor-
related or uncorrelated. When the sources are correlated the pressure waves 
from the correlated sources simply add, as shown in Equation 1.26.

 P t P t P t P tNtotal correlated  ( ) ( ) ( ) ( )   1 2
…

 (1.26)

Note that the correlated waves are all at the same frequencies, and so always 
stay in the same time relationship to each other, which results in a composite 
pressure variation at the combination point, which is also a function of time.

Because a sound wave has periodicity, the pressure from the different 
sources may have a different sign and amplitude depending on their rela-
tive phase. For example, if two equal amplitude sounds arrive in phase then 
their pressures add and the result is a pressure amplitude at that point of 
twice the single source. However, if they are out of phase the result will be 
a pressure amplitude at that point of zero as the pressures of the two waves 
cancel. Figure 1.13 shows these two conditions.

Therefore, there will be the following consequences:

n If the correlation is due to multiple sources then the composite 
pressure will depend on the relative phases of the intersecting waves. 

Uncorrelated reflection due to long delay Uncorrelated multiple sources

FIgure �.�2
Addition of uncorrelated 
sources.
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This will depend on both the relative path lengths between the 
sources and their relative phases.

n If the relative phases between the sources can be changed electronically, 
their effect may be different to a phase shift caused by a propagation 
delay. For example, a common situation is when one source’s signal is 
inverted with respect to the other, such as might happen if one stereo 
speaker is wired the wrong way round compared to the other. In this 
case, if the combination point was equidistant from both sources, and 
the sources were of the same level, the two sources would cancel each 
other out and give a pressure amplitude at that point of zero. This 
cancellation would occur at all frequencies because the effect phase shift 
due to inverting the signal is frequency independent.

n However, if the phase shift was due to a delay, which could be caused 
by different path lengths or achieved by electronic means, then, as 
the frequency increases, the phase shift would increase in proportion 
to the delay, as shown in Equation 1.27.

 
Phase Shift Delay Frequency ( )Hzdegrees seconds  360

 
(1.27)

In-phase addition

Antiphase addition

FIgure �.�3
Addition of sine waves of 
different phases.
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As a consequence, whether the sources add in phase, antiphase, or some-
where in between, they will be frequency dependent: that is, at the frequen-
cies where the sources are in-phase they will add constructively whereas at 
the frequencies where they are in antiphase they will add destructively. At 
very low frequencies, unless the delay is huge, they will tend to add con-
structively because the phase shift will be very small.

n If the effective phase shifts are due to a combination of delay and 
inversion then the result will also be due to a combination of the 
two effects. For example, for the case of two sources, if there is both 
delay and inversion, then, at very low frequencies, the sources will 
tend to cancel each other out, because the effect of the delay will 
be small. However, as we go up in frequency, the sources will add 
constructively when the delay causes the sources to be in-phase; this 
will be at a lower frequency than would be the case if the sources 
were not inverted with respect to each other.

n Changing the position at which the pressure variation is observed 
will change the time relationships between the waves being 
combined. Therefore, the composite result from correlated sources 
is dependent on position. It will also depend on frequency because 
the effective phase shift caused by a time delay is proportional to 
frequency.

As an example let us look at the effect of a single delayed reflection on the 
pressure amplitude at a given point (see Example 1.9).

�.3.2 the level when uncorrelated sounds add
On the other hand, if the sound waves are uncorrelated then they do not 
add algebraically, like correlated waves; instead we must add the powers of 
the individual waves together. As stated earlier, the power in a waveform 
is proportional to the square of the pressure levels, so in order to sum the 
powers of the waves we must square the pressure amplitudes before adding 
them together. If we want the result as a pressure then we must take the 
square root of the result. This can be expressed in the following equation:

 
P P P PNtotal uncorrelated    1

2
2

2 2…( )
 

(1.2�)

Adding uncorrelated sources is different from adding correlated sources in 
several respects. Firstly, the resulting total is related to the power of the 
signals combined and so is not dependent on their relative phases. This 



3�1.3 Adding Sounds Together
For coherent addition of sources, having to do everything using sines and cosines is very 
awkward and inconvenient. A better way is to represent the acoustic signals as complex 
numbers. Complex numbers are pairs of numbers based on the following form: a  jb 
where j, or i represent the 1. This is called an imaginary number. Consequently a is 
called the real part of the pair and b is called the imaginary part. To see how this works 
look at the figure below:

Here one can see that the combination of the sine and cosine in a two-dimensional 
complex space forms a spiral which is called a complex exponential a jb e a jb arg( )   
re r jrθ θ θ cos sin( ) ( ) wherewhere r is the radius, or modulus of the spiral and  is the phase  
or rotation of the spiral. Thus a    r cos() and b    r sin(). The modulus of a jb  

a jb r a b   2 2  and the argument of a jb a jb
b
a

     arg( ) θ tan 1






Using these simple relationships it is possible to have the following arithmetic rules:
 Addition/subtraction (a  jb)  (c  jd)  (a  c)  j(b  d), with the  applied 
respectively.
Multiplication (a  jb) (c  jd)  (ac  bd)  j(ad  bc). Note: j x j  1

Division

 

( )a jb
c jd

a jb
c jd

c jd
c jd

ac bd j bc ad

c















  

( )
( )
( )

( )
( )

( ) ( )

( 2 dd 2)

Note: inverting the sign of the imaginary part makes the complex conjugate of the 
complex number.

Adding and subtracting the complex representation of acoustic sources, of the same 
frequency, naturally handles their phase differences. Multiplying the complex represen-
tation of an acoustic source by a complex number can determine the effect of a filter or 
propagation delay. For more details see most engineering mathematics textbooks.
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exampLe �.9
The sound at a particular point consists of a main loudspeaker signal and a reflection 
at the same amplitude that has been delayed by 1 millisecond. What is the pressure 
amplitude at this point at 250 Hz, 500 Hz and 1 kHz?
The equation for pressure at a point due to a single frequency is given by the equation:

 

P P ft Pat a point sound amplitude sound amplitude ( ) or  sin 2π   ( )

where the frequency (in Hz)
and the time (

sin 360





ft

f
t iin s)  

Note the multiplier of 2, or 360°, within the sine function is required to express accu-
rately the position of the wave within the cycle. Because a complete rotation occurs every 
cycle, one cycle corresponds to a rotation of 360 degrees, or, more usually, 2 radi-
ans. This representation of frequency is called angular frequency (1 Hz [cycle per sec-
ond]  2 radians per second).

The effect of the delay on the difference in path lengths alters the time of arrival of 
one of the waves, and so the pressure at a point due to a single frequency delayed by 
some time, , is given by the equation:

 

P P f t

P
at a point sound amplitude

sound amplit

 ( ( ))

or 

 sin 2π τ

uude  ( ( ))

where the delay (in s)

sin 360 



f t τ

τ  

Add the delayed and undelayed sine waves together to give:

 
P P f t P fttotal delayed undelayed ( ( ))  ( )    sin sin360 360τ

 

Assuming that the delayed and undelayed signals are of the same amplitude this can 
be reexpressed as:
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2
360

2
cos sin

τ τ


































 

The cosine term in this equation is determined by the delay and frequency, and the 
sine term represents the original wave slightly delayed. Thus we can express the com-
bined pressure amplitude of the two waves as:
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means that the result of combining uncorrelated sources is always an 
increase in level. The second difference is that the level increase is lower 
because powers rather than pressures are being added. Recall that the maxi-
mum increase for two equal correlated sources was a factor of two increases 
in pressure amplitude. However, for uncorrelated sources the powers of the 
sources are added and, as the power is proportional to the square of the 
pressure, this means that the maximum amplitude increase for two uncor-
related sources is only 2.

However, the addition of uncorrelated components always results in 
an increase in level without any of the cancellation effects that correlated 
sources suffer. Because of the lack of cancellation effects, the spatial varia-
tion in the sum of uncorrelated sources is usually much less than that of 
correlated ones, as the result only depends on the amplitude of the sources. 
As an example let us consider the effect of adding together several uncorre-
lated sources of the same amplitude.

How does the addition of sources affect the sound pressure level (SPL),  
the sound power level (SWL), and the sound intensity level (SIL)? For the 
SWL and SIL, because we are adding powers, the results will be the same 
whether the sources are correlated or not. However, for SPL, there will be 
a difference between the correlated and uncorrelated results. The main dif-
ficulty that arises when these measures are used to calculate the effect of 

Using the above equation we can calculate the effect of the delay on the pressure 
amplitude at the three different frequencies as:
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These calculations show that the summation of correlated sources can be strongly 

frequency dependent and can vary between zero and twice the wave pressure amplitude.
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combining sound sources is confusion over the correct use of decibels dur-
ing the calculation.

�.3.3 adding decibels together
Decibels are power ratios expressed on a logarithmic scale and this means 
that adding decibels together is not the same as adding the sources’ ampli-
tudes together. This is because adding logarithms together is equivalent to 
the logarithm of the product of the quantities. Clearly this is not the same 
as a simple summation!

When decibel values are to be added together, it is important to convert 
them back to their original ratios before carrying out the addition. If a deci-
bel result of the summation is required, then the sum must be converted 
back to decibels after the summation has taken place. To make this clearer 
let us look at Example 1.11.

There are some areas of sound level calculation where the fact that the 
addition of decibels represents multiplication is an advantage. In these 
situations the result can be expressed as a multiplication, and so can be 
expressed as a summation of decibel values. In other words, decibels can 
be added when the underlying sound level calculation is a multiplication. 
In this context the decibel representation of sound level is very useful, as 

exampLe �.�0

Calculate the increase in signal level when two vocalists sing together at the same 
level and when a choir of N vocalists sing together, also at the same level.

The total level from combining several uncorrelated sources together is given by 
Equation 1.28 as:

 
P P P PNtotal uncorrelated    ( )1

2
2
2 2…

 

For N sources of the same amplitude this can be simplified to:

 
P P P P NP P NN  uncorrelated

2( )     2 2 2…
 

Thus the increase in level, for uncorrelated sources of equal amplitude, is propor-
tional to the square root of the number of sources. In the case of just two sources this 
gives:

 
P P N P Ptwo uncorrelated   2 1 41.
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exampLe �.��

Calculate the increase in signal level when two vocalists sing together, one at 
69 dB and the other at 7� dB SpL.
From Equation 1.20 the SPL of a single source is:
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For multiple, uncorrelated, sources this will become:
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(1.29)

We must substitute the pressure squared values that the singers’ SPLs represent. 
These can be obtained with the following equation:
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Substituting in our two SPL values gives:
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Substituting these two values into Equation 1.29 gives the result as:
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Note that the combined sound level is only about 2 dB more than the louder of the 
two sounds and not 69 dB greater, which is the result that would be obtained if the SPLs 
were added directly in decibels.
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there are many acoustic situations in which the effect on the sound wave is 
multiplicative, for example the attenuation of sound through walls or their 
absorption by a surface. To make use of decibels in this context let us con-
sider Example 1.12.

�.4 the INverSe Square LaW

So far we have only considered sound as a disturbance that propagates in 
one direction. However, in reality sound propagates in three dimensions. 
This means that the sound from a source does not travel on a constant 
beam; instead it spreads out as it travels away from the radiating source, as 
shown in Figure 1.10.

exampLe �.�2

Calculate the increase in the sound pressure level (SpL) when two vocalists sing 
together at the same level and when a choir of N vocalists sing together, also at 
the same level.
The total level from combining several uncorrelated single sources is given by:

 
P P NN  uncorrelated 

 

This can be expressed in terms of the SPL as:
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In this equation the first term simply represents the SPL of a single source, and the 
addition of the decibel equivalent of the square root of the number of sources represents 
the increase in level due to the multiple sources. So this equation can be also expressed as:

 
SPL SPL NN  uncorrelated single source ( )  10 10log

 

This equation will give the total SPL for N uncorrelated sources of equal level. For 
example, 10 sources will raise the SPL by 10 dB, since 10log(10)  10.

In the case of two singers the above equation becomes:

 
SPL SPL SPLN  uncorrelated single source single so( )  10 210log uurce  dB 3

 

So the summation of two uncorrelated sources increases the sound pressure level  
by 3 dB.
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As the sound spreads out from a source it gets weaker. This is not due to it 
being absorbed but due to its energy being spread more thinly. Figure 1.15 gives 
a picture of what happens. Consider a half blown-up spherical balloon which is 
coated with honey to a certain thickness. If the balloon is blown up to double 
its radius, the surface area of the balloon would have increased fourfold.

As the amount of honey has not changed it must therefore have a quar-
ter of the thickness that it had before. The sound intensity from a source 
behaves in an analogous fashion in that every time the distance from a sound 
source is doubled the intensity reduces by a factor of four, that is, there is an 
inverse square relationship between sound intensity and the distance from 
the sound source. The area of a sphere is given by the equation

 
A rsphere  4 2π

 

The sound intensity is defined as the power per unit area. Therefore the 
sound intensity as a function of distance from a sound source is given by:
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 source
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source

4 2π  

(1.30)

 

where the sound intensity (in W m )
the power ofsource

I
W





2

  the source (in W)
and the distance from the source (in r  mm)  

Equation 1.30 shows that the sound intensity for 
a sound wave that spreads out in all directions 
from a source reduces as the square of the dis-
tance. Furthermore this reduction in intensity is 
purely a function of geometry and is not due to 
any physical absorption process. In practice, there 
are sources of absorption in air, for example impu-
rities and water molecules, or smog and humid-
ity. These sources of absorption have greater 
effect at high frequencies and, as a result, sound 
not only gets quieter but also gets duller as one 
moves away from a source. The amount of excess 
attenuation is dependent on the level of impuri-
ties and humidity, and is therefore variable.

From these results we can see that the sound at  
1 m from a source is 11 dB less than the sound power  
level at the source. Note that the sound intensity 

Honey

FIgure �.�5 The honey and balloon model of the 
inverse square law for sound.
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exampLe �.�3

a loudspeaker radiates one hundred milliwatts (�00 mW). What is the sound 
intensity level (SIL) at a distance of � m, 2 m and 4 m from the loudspeaker? how 
does this compare with the sound power level (SWL) at the loudspeaker?
The sound power level can be calculated from Equation 1.19 and is given by:
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The sound intensity at a given distance can be calculated using Equations 1.18 and 
1.30 as:
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This can be simplified to give:
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which can be simplified further to:
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This equation can then be used to calculate the intensity level at the three distances as:
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level at the source is, in theory, infinite because the area for a point source 
is zero. In practice, all real sources have a finite area so the intensity at the 
source is always finite. We can also see that the sound intensity level reduces 
by 6 dB every time we double the distance; this is a direct consequence of the 
inverse square law and is a convenient rule of thumb. The reduction in inten-
sity of a source with respect to the logarithm of distance is plotted in Figure 
1.16 and shows the 6 dB per doubling of distance relationship as a straight 
line except when one is very close to the source. In this situation the fact that 
the source is finite in extent renders Equation 1.30 invalid. As an approxi-
mate rule the nearfield region occurs within the radius described by the physi-
cal size of the source. In this region the sound field can vary wildly depending 
on the local variation of the vibration amplitudes of the source.

Equation 1.30 describes the reduction in sound intensity for a source 
which radiates in all directions. However, this is only possible when the 
sound source is well away from any surfaces that might reflect the prop-
agating wave. Sound radiation in this type of propagating environment 
is often called the free field radiation, because there are no boundaries to 
restrict wave propagation.

�.4.� the effect of boundaries
But how does a boundary affect Equation 1.30? Clearly many acoustic con-
texts involve the presence of boundaries near acoustic sources, or even all 
the way round them in the case of rooms, and some of these effects will be 
considered in Chapter 6. However, in many cases a sound source is placed 
on a boundary, such as a floor. In these situations the sound is radiating into 
a restricted space, as shown in Figure 1.17. However, despite the restriction 
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of the radiating space, the surface area of the sound wave still increases 
in proportion to the square of the distance, as shown in Figure 1.17.  
The effect of the boundaries is merely to concentrate the sound power 
of the source into a smaller range of angles. This concentration can be 
expressed as an extra multiplication factor in Equation 1.30. Therefore 
the equation can be rewritten as:

 
I

QW

r
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source
4 2π  

(1.32)

 

where the sound intensity (in W m )
th

directive sourceI
Q





2

ee directivity of the source (compared to a sphere)

sourceW 



the power of the source (in W)
and the distance from thr ee source (in m)  

Equation 1.32 can be applied to any source of sound which directs its sound 
energy into a restricted solid angle which is less than a sphere. Obviously 
the presence of boundaries is one means of restriction, but other techniques 
can also achieve the same effect. For example, the horn structure of brass 
instruments results in the same effect. However, it is important to remem-
ber that the sound intensity of a source reduces in proportion to the square 
of the distance, irrespective of the directivity.

The effect of having the source on a boundary can also be calculated; as 
an example let us examine the effect of boundaries on the sound intensity 
from a loudspeaker.

From these calculations we can see that each boundary increases the 
sound intensity at a point by 3 dB, due to the increased directivity. Note 
that one cannot use the above equations on more than three boundaries 
because then the sound can no longer expand without bumping into some-
thing. We shall examine this subject in more detail in Chapter 6. However, 
it is possible to have directivities of greater than � using other techniques. 
For example, horn loudspeakers with a directivity of 50 are readily available 
as a standard product from public address loudspeaker manufacturers.

�.5 SOuNd INteraCtIONS

So far we have only considered sound in isolation and we have seen that 
sound has velocity, frequency, and wavelength, and reduces in intensity in 
proportion to the square of the distance from the source. However, sound 

FIgure �.�7
The inverse square law for 
sound at boundaries.



4�1.5 Sound Interactions
also interacts with physical objects and other sound waves, and is affected 
by changes in the propagating medium. The purpose of this section is to 
examine some of these interactions as an understanding of them is neces-
sary in order to understand both how musical instruments work and how 
sound propagates in buildings.

�.5.� Superposition
When sounds destructively interfere with each other they do not disappear. 
Instead they travel through each other. Similarly, when they constructively 

exampLe �.�4

a loudspeaker radiates �00 mW. Calculate the sound intensity level (SIL) at a 
distance of 2 m from the loudspeaker when it is mounted on �, 2 and 3 mutually 
orthogonal boundaries.
The sound intensity at a given distance can be calculated using Equations 1.18 and 1.32 as:

 

SIL
I

I

QW

r
W

 10 10 4
10 10

2
log logactual

ref

source

r











π
eef











  

which can be simplified to give:
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This is similar to Equation 1.32 except for the addition of the term for the directivity, 
Q. The presence of 1, 2 and 3 mutually orthogonal boundaries converts the sphere to a 
hemisphere, half hemisphere and quarter hemisphere, which corresponds to a Q of 2, 4 
and 8, respectively. As the only difference between the results with the boundaries is the 
term in Q, the sound intensity level at 2 m can be calculated as:
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interfere they do not grow but simply pass through each other. This is because 
although the total pressure, or velocity component, may lie anywhere between 
zero and the sum of the individual pressures or velocities, the energy flow of 
the sound waves is still preserved and so the waves continue to propagate. 
Thus the pressure or velocity at a given point in space is simply the sum, 
or superposition, of the individual waves that are propagating through that 
point, as shown in Figure 1.1�. This characteristic of sound waves is called 
linear superposition and is very useful as it allows us to describe, and there-
fore analyze, the sound wave at a given point in space as the linear sum of 
individual components.

�.5.2 Sound refraction
This is analogous to the refraction of light at the boundary of different 
materials. In the optical case refraction arises because the speed of light is 
different in different materials; for example it is slower in water than it is 
in air. In the acoustic case refraction arises for the same reasons, because 
the velocity of sound in air is dependent on the temperature, as shown in 
Equation 1.5.

Consider the situation shown in Figure 1.19 where there is a boundary 
between air at two different temperatures. When a sound wave approaches 

FIgure �.�8
Superposition of a sound 
wave in the golf ball and 
spring model.



431.5 Sound Interactions
this boundary at an angle, then the direction of propagation will alter 
according to Snell’s law, that is, using Equation 1.5:
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where , the propagation angles in the two media
, T

θ θ1 2

1



c cTT the velocities of the sound waves in the two media
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TT T1 2, the absolute temperatures of the two media  

Thus the change in direction is a function of the square root of the ratio 
of the absolute temperatures of the air on either side of the boundary. As 
the speed of sound increases with temperature one would expect to observe 
that when sound moves from colder to hotter air it would be refracted away 
from the normal direction, and that it would refract toward the normal 
when moving from hotter to colder air. This effect has some interesting 
consequences for outdoor sound propagation.

Normally the temperature of air reduces as a function of height and this 
results in the sound wave being bent upward as it moves away from a sound 
source, as shown in Figure 1.20. This means that listeners on the ground 
will experience a reduction in sound level as they move away from the sound, 
which reduces more quickly than the inverse square law 
would predict. This is a helpful effect for reducing the 
effect of environmental noise nuisance. However, if the 
temperature gradient increases with height then instead of 
being bent up the sound waves are bent down, as shown 
in Figure 1.21. This effect can often happen on summer 
evenings and results in a greater sound level at a given 
distance than predicted by the inverse square law. This 
behavior is often responsible for the pop concert effect 
where people living some distance away from the concert 
experience noise disturbance whereas people living nearer 
the concert do not experience the same level of noise.

Refraction can also occur at the boundaries between liq-
uids at different temperatures, such as water, and in some 
cases the level of refraction can result in total internal 
reflection. This effect is sometimes used by submarines to 
hide from the sonar of other ships; it can also cause the 
sound to be ducted between two boundaries and in these 
cases sound can cover large distances. It is thought that 
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FIgure �.�9 Refraction of a sound wave 
(absolute temperature in medium1 is T1 and in 
medium2 is T2; velocity in medium1 is yT1 and in 
medium2 is yT2).
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these mechanisms allow whales and dolphins to 
communicate over long distances in the ocean.

Wind can also cause refraction effects because 
the velocity of sound within the medium is unaf-
fected by the velocity of the medium. The veloc-
ity of a sound wave in a moving medium, when 
viewed from a fixed point, is the sum of the two 
velocities, so that it is increased when the sound 
is moving with the wind and is reduced when it is 
moving against the wind. As the velocity of air is 
generally less at ground level compared with the 
velocity higher up (due to the effect of the friction 
of the ground), sound waves are bent upward or 
downward depending on their direction relative to 
the wind. The degree of direction change depends 
on the rate of change in wind velocity as a func-
tion of height; a faster rate of change results in 
a greater direction change. Figure 1.22 shows the 
effect of wind on sound propagation.

�.5.3 Sound absorption
Sound is absorbed when it interacts with any physi-
cal object. One reason is the fact that when a sound 
wave hits an object then that object will vibrate, 
unless it is infinitely rigid. This means that vibra-
tional energy is transferred from the sound wave 
to the object that has been hit. Some of this energy 
will be absorbed because of the internal frictional 
losses in the material that the object is made of. 
Another form of energy loss occurs when the sound 
wave hits, or travels through, some porous mate-

rial. In this case there is a very large surface area of interaction in the material, 
due to all the fibers and holes. There are frictional losses at the surface of any 
material due to the interaction of the velocity component of the sound wave 
with the surface. A larger surface area will have a higher loss, which is why 
porous materials such as cloth or rock-wool absorb sound waves strongly.

�.5.4 Sound reflection from hard boundaries
Sound is also reflected when it strikes objects and we have all experienced 
the effect as an echo when we are near a large hard object such as a cliff or 
large building. There are two main situations in which reflection can occur.

TemperatureDistance from source

Height

Sound shadow

Temperature reduces with height

FIgure �.20 Refraction of a sound wave due to a 
normal temperature gradient.

TemperatureDistance from source

Height

Temperature increases with height

FIgure �.2� Refraction of a sound wave due to an 
inverted temperature gradient.



451.5 Sound Interactions
In the first case the sound wave strikes an immovable object, or hard 
boundary, as shown in Figure 1.23. At the boundary between the object and 
the air the sound wave must have zero velocity, because it can’t move the 
wall. This means that at that point all the energy in the sound is in the 
compression of the air, or pressure. As the energy stored in the pressure 

Distance from source

Height

Sound shadow

Distance from source

Wind’s velocity
gradient

FIgure �.22
Refraction of a sound wave 
due to a wind velocity 
gradient.

FIgure �.23
Reflection of a sound wave 
due to a rigid barrier.
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cannot transfer in the direction of the propagating wave, it bounces back 
in the reverse direction, which results in a change of phase in the velocity 
component of the wave.

Figure 1.23 shows this effect using our golf ball and spring model. One 
interesting effect occurs due to the fact that the wave has to change direction 
and to the fact that the spring connected to the immovable boundary is com-
pressed twice as much compared with a spring well away from the boundary. 
This occurs because the velocity components associated with the reflected 
(bounced back) wave are moving in contrary motion to the velocity compo-
nents of the incoming wave, due to the change of phase in the reflected velocity 
components. In acoustic terms this means that while the velocity component 
at the reflecting boundary is zero, the pressure component is twice as large.

�.5.5 Sound reflection from bounded to unbounded boundaries
In the second case the wave moves from a bounded region, for example a tube, 
into an unbounded region, for example free space, as shown in Figure 1.24.  
At the boundary between the bounded and unbounded regions the molecules in 
the unbounded region find it a lot easier to move than in the bounded region. 
The result is that, at the boundary, the sound wave has a pressure component  

Bounded region

U
nbounded region

U
nbounded region

U
nbounded region

Bounded region

Bounded region

FIgure �.24
Reflection of a sound 
wave due to bounded–
unbounded transition.
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which is close to zero and a large velocity component. Therefore at this 
point all the energy in the sound is in the kinetic energy of the moving air  
molecules—in other words, the velocity component. Because there is less 
resistance to movement in the unbounded region, the energy stored in the 
velocity component cannot transfer in the direction of the propagating wave 
due to there being less “springiness” to act on. Therefore the momentum 
of the molecules is transferred back to the “springs” in the bounded region 
which pushed them in the first place, by stretching them still further.

This is equivalent to the reflection of a wave in the reverse direction in 
which the phase of the wave is reversed, because it has started as a stretch-
ing of the “springs,” or rarefaction, as opposed to a compression. Figure 1.24  
shows this effect using the golf ball and spring model in which the unbounded 
region is modeled as having no springs at all. An interesting effect also occurs 
in this case, due to the fact that the wave has to change direction. That is, 
the mass that is connected to the unbounded region is moving with twice 
the velocity compared to masses well away from the boundary. This occurs 
because the pressure components associated with the reflected (bounced 
back) wave are moving in contrary motion to the pressure components of the 
incoming wave, due to the change of phase in the reflected pressure compo-
nents. In acoustic terms this means that while the pressure component at 
the reflecting boundary is zero, the velocity component is twice as large.

To summarize, reflection from a solid boundary results in a reflected 
pressure component that is in phase with the incoming wave, whereas 
reflection from a bounded to unbounded region results in a reflected pres-
sure component which is in antiphase with the incoming wave. This 
arises due to the difference in acoustic impedance at the boundary. In the 
first case the impedance of the boundary is greater than the propagating 
medium and in the second case it is smaller. For angles of incidence on the 
boundary, away from the normal, the usual laws of reflection apply.

�.5.6 Sound interference
We saw earlier that when sound waves come from correlated sources then 
their pressure and associated velocity components simply add. This means 
that the pressure amplitude could vary between zero and the sum of the pres-
sure amplitudes of the waves being added together, as shown in Example 1.9. 
Whether the waves add together constructively or destructively depends on 
their relative phases and this will depend on the distance each one has had 
to travel. Because waves vary in space over their wavelength then the phase 
will also spatially vary. This means that the constructive or destructive addi-
tion will also vary in space.

Free space is a 
region in which 
the sound wave 
is free to travel 
in any direction. 
That is, there are 
no obstructions 
or changes in 
the propagation 
medium to affect 
its travel. Therefore, 
free space is a 
form of unbounded 
region. However, 
not all bounded 
regions are free 
space. For example, 
the wave may be 
coming out of a 
tube in a very large 
wall. In this case 
there is a transition 
between a bounded 
and an unbounded 
region but it is not 
free space, because 
the wave cannot 
propagate in all 
directions.
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Consider the situation shown in Figure 1.25, which shows two cor-
related sources feeding sound into a room. When the listening point is 
equidistant from the two sources (P1), the two sources add constructively 
because they are in phase. If one moves to another point (P2), which is not 
equidistant, the waves no longer necessarily add constructively. In fact, if 
the path difference is equal to half a wavelength then the two waves will 
add destructively and there will be no net pressure amplitude at that point. 
This effect is called interference, because correlated waves interfere with 
each other; note that this effect does not occur for uncorrelated sources.

The relative phases of the waves depend on their path difference or 
relative delays. Because of this the pattern of constructive and destructive 
interferences depends strongly on position, as shown in Figure 1.26. Less 
obviously the interference is also strongly dependent on frequency. This is 
because the factor that determines whether or not the waves add construc-
tively or destructively is the relative distance from the listening point to the 
sources measured in wavelengths (). Because the shape of the amplitude 
response looks a bit like the teeth of a comb, the frequency domain effect 
of interference is often referred to as “comb filtering.” As the wavelength is 
inversely proportional to frequency one would expect to see the pattern of 
interference vary directly with frequency, and this is indeed the case.

Figure 1.27 shows the amplitude that results when two sources of equal 
amplitude but different relative distances are combined. The amplitude is 
plotted as a function of the relative distance measured in wavelengths (). 
Figure 1.27 shows that the waves constructively interfere when the relative 
delay is equal to a multiple of a wavelength, and that they interfere destruc-
tively at multiples of an odd number of half wavelengths. As the number of 

P1

P2

FIgure �.25
Interference from correlated 
sources. FIgure �.26 Effect of position on interference at a given frequency.
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wavelengths for a fixed distance increases with frequency, this figure shows 
that the interference at a particular point varies with frequency. If the two 
waves are not of equal amplitude then the interference effect is reduced, 
also as shown in Figure 1.27. In fact once the interfering wave is less than 
one eighth of the other wave then the peak variation in sound pressure 
level is less than 1 dB.

There are several acoustical situations which can cause interference 
effects. The obvious ones are when two loudspeakers radiate the same 
sound into a room, or when the same sound is coupled into a room via two 
openings which are separated. A less obvious situation is when there is a 
single sound source spaced away from a reflecting boundary, either bounded 
or unbounded. In this situation an image source is formed by the reflection 
and thus there are effectively two sources available to cause interference, 
as shown in Figure 1.2�. This latter situation can often cause problems for 
recording or sound reinforcement due to a microphone picking up a direct 
and reflected sound component and so suffering interference.

�.5.7 Standing waves at hard boundaries (modes)
The linear superposition of sound can also be used to explain a wave phe-
nomenon known as “standing waves,” which is applicable to any form of 
sound wave. Standing waves occur when sound waves bounce between 
reflecting surfaces. The simplest system in which this can occur consists of 
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two reflecting boundaries as shown in Figure 1.30. In this system the sound 
wave shuttles backward and forward between the two reflecting surfaces.

At most frequencies the distance between the two boundaries will not 
be related to the wavelength and so the compression and rarefaction peaks 

exampLe �.�5

two loudspeakers are one meter apart and radiate the same sound pressure level. a 
listener is two meters directly in front of one speaker on a line which is perpendicular 
to the line joining the two loudspeakers; see Figure �.29. What are the first two 
frequencies at which destructive interference occurs? When does the listener first 
experience constructive interference, other than at very low frequencies?
First work out the path length difference using Pythagoras’ theorem:

 
∆path length ( m m ) m m   1 2 2 0 242 2 .

 

The frequencies at which destructive interference will occur will be /2 and 3/2. 
The frequencies at which this will happen will be when these wavelengths equal the path 
length difference. Thus the first frequency can be calculated using:
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The second frequency will occur at 3 times the first 
and so can be given by:

f f3 2 23 3 717 2150λ λ/ / Hz Hz    
 

The frequency at which the first constructive inter-
ference happens will occur at twice the frequency of the 
first destructive interference which will be:

f fλ λ    2 2 717 14342/ Hz Hz
 

If the listener were to move closer to the center line 
of the speakers then the relative delays would reduce and 
the frequencies at which destructive interference occurs 
would get higher. In the limit when the listener was equi-
distant the interference frequencies would be infinite, 
that is, there would be no destructive interference.

 If we used 
complex numbers 
to represent the 
speaker outputs, 
say Ls1 and 
Ls2, then we 
could account 
for the phase 
shift due to the 
propagation delay 
by multiplying the 
speaker outputs by:
delay (k) 

 ejkdistance 
multiplying 
distance by k, 
the wavenumber, 
defines the number 
of cycles the 
wave is delayed 
by. So if the two 
distances were d1 
and d2 respectively, 
the result at the 
listener position 
would be:

S kresult ( ) 

Ls e Ls ejk jk
1 2

1 2
 


d d

 and one could 
find the magnitude 
and phase of the 
composite result 
by taking the 
argument and 
magnitude of the 
result. Note that 
because the phase 
depends on k, the 
result is frequency 
dependent.

1m

2m

FIgure �.29
Interference at a point due to 
two loudspeakers.
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and troughs will occupy all positions between the two boundaries, with 
equal probability, as shown in Figure 1.31. However, when the wavelength 
is related to the distance between the two boundaries the wave keeps trac-
ing the same path as it travels between the two boundaries. This means 
that the compressions and rarefactions always end up in the same position 
between the boundaries.

Thus the sound wave will appear to be stationary between the reflecting 
boundaries, and so is called a standing wave, or, more precisely, a resonant 
mode. It is important to realize that the wave is still moving at its normal 
speed—it is merely that, like a toy train, the wave endlessly retraces the 
same positions between the boundaries with respect to the wavelength, as 
shown in Figure 1.32.

Figures 1.32 and 1.33 show the pressure and velocity components 
respectively of a standing wave between two hard reflecting boundaries. In 

FIgure �.30 Reflection of a sound wave between two 
parallel surfaces.

FIgure �.3� A non-stationary sound wave 
between two parallel surfaces.

FIgure �.32 The pressure components of a standing  
wave between two hard boundaries; this is known as a 
“resonant mode.”

FIgure �.33 The velocity components of a standing 
wave between two hard boundaries.
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this situation the pressure component is a maximum and the velocity com-
ponent is a minimum at the two boundaries. The largest wave that can fit 
these constraints is a half wavelength and this sets the lowest frequency 
at which a standing wave can exist for a given distance between reflectors, 
which can be calculated using the following equation:
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Any multiple of half wavelengths will also fit between the two reflectors, 
and so there is in theory an infinite number of frequencies at which stand-
ing waves occur which are all multiples of flowest. These can be calculated 
directly using:
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where the th standing wave frequency (in Hz)
and  
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n
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An examination of Figures 1.32 and 1.33 shows that there are points of 
maximum and minimum amplitude of the pressure and velocity compo-
nents. For example, in Figure 1.31 the pressure component’s amplitude is a 
maximum at the two boundaries and at the midpoint, while in Figure 1.33 
the velocity component is zero at the two boundaries and the midpoint. 
The point at which the pressure amplitude is zero is called a pressure 
node and the maximum points are called pressure antinodes. Note that as 
the number of half wavelengths in the standing waves increases then the 
number of nodes and antinodes increases, and for hard reflecting boundar-
ies the number of pressure nodes is equal to, and the number of pressure  
antinodes is one more than, the number of half wavelengths. Velocity 
nodes and antinodes also exist, and they are always complementary to the 
pressure nodes, that is, a velocity antinode occurs at a pressure node and 

Strictly speaking 
the standing waves 
we are discussing 
here should be 
called resonant 
modes. This is 
because it is 
possible to set up 
a standing wave 
without the use of 
two boundaries. 
For example, one 
could use two 
loudspeakers 
spaced apart and 
no boundaries to 
get a standing 
wave at discrete 
frequencies. 
One can do the 
same with one 
loudspeaker, or 
sound source, and 
one boundary.
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vice versa, as shown in Figure 1.34. This happens because the energy in the 
traveling wave must always exist at a pressure node carried in the veloc-
ity component, and at a velocity node the energy is carried in the pressure 
component.

�.5.8 Standing waves at other boundaries
There are two other pairs of boundary arrangements which can support 
standing waves. The first, shown in Figure 1.35 and 1.36, is the case of 
a bounded-to-unbounded propagation boundary at both ends. An example 
would be a tube or pipe which is open at both ends. In this situation the 
pressure component is zero at the boundaries whereas the velocity compo-
nent is at a maximum, as shown in Figures 1.35 and 1.36. Like the hard 
reflecting boundaries the minimum frequency for a standing wave occurs 
when there is precisely half a wavelength between the two boundaries, and 
at all subsequent multiples of this frequency. This means that Equation 
1.35 can also be used to calculate the standing wave frequencies for this 
boundary arrangement.

Velocity component

Pressure component

FIgure �.34
The pressure and velocity 
components of a standing 
wave between two hard 
boundaries.

FIgure �.36 The velocity components of 
a standing wave between two bound–unbound 
boundaries.

FIgure �.35 The pressure components of  
a standing wave between two bound–unbound 
boundaries.
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The second is more interesting and consists of one hard boundary and 
one bound–unbound boundary, and is shown in Figures 1.37 and 1.3�. In 
this situation there is a pressure node at the bound–unbound boundary and 
a pressure antinode at the hard boundary. The effect of this is to allow a 
standing wave to exist when there is only an odd number of quarter wave-
lengths between the two boundaries.

A standing wave cannot exist with even numbers of quarter wavelengths 
as this would require a pressure node or antinode at both ends as shown in 
Figures 1.32 and 1.35. The frequencies which can support standing waves 
exist at odd multiples of the lowest standing wave frequency. This can be 
expressed algebraically as:
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exampLe �.�6

Calculate the first two modal (standing wave) frequencies for a pipe 98.5 cm long, 
and open at both ends.
As this is a system with identical boundaries we can use Equation 1.35 to calculate the 
two frequencies as:
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These two frequencies correspond to the notes F3 and F4, which differ by an octave.

FIgure �.37 The pressure components of a standing 
wave between mixed boundaries.

FIgure �.38 The velocity components of a standing 
wave between two mixed boundaries.
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Figures 1.37 and 1.3� demonstrate the standing wave for n  2 which 
is five times the lowest supported standing wave frequency. Standing waves 
can also occur for any type of wave propagation. A transverse wave on a 
string which is clamped at the ends has standing waves which can be pre-
dicted using Equation 1.36, provided one uses the propagation velocity of 
the transverse wave for v.

Standing waves in an acoustic context are often called the modes of a 
given system; the lowest frequency standing wave is known as the “first 
order mode,” and the multiples of this are higher order modes. So the third 
order mode of a system is the third lowest frequency standing wave pattern 
which can occur in it. Standing waves are also not just restricted to situa-
tions with two parallel reflecting boundaries. In fact any sequence of reflec-
tions or refractions which returns the wave back to the beginning of its 
phase will support a standing wave or mode. This can happen in one, two 
and three dimensions and with any form of wave propagation. The essen-
tial requirement is a cyclic path in which the time of propagation results in 
the wave traveling around this path in phase with the previous time round. 
Figure 1.39 shows an example of a two-dimensional standing wave.

�.5.9 Sound diffraction
We have all experienced the ability of sound to travel around the corners 
of a building or other objects. This is due to a process, known as “diffrac-
tion,” in which the sound bends around objects, as shown in Figure 1.40. 

exampLe �.�7

Calculate the first two modal (standing wave) frequencies for the same pipe as in 
example �.�6 with one end closed.
As this is a system with non-identical boundaries we must use Equation 1.36 to calculate 
the two frequencies as:
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In this case the first mode is at half the frequency of the pipe, that is open at both 
ends, and an octave below on the musical scale, which is F2. The second mode is now at 
three times the lowest mode, which is approximately equal to C4 on the musical scale.
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Diffraction occurs because the variations in air pressure, due to the com-
pressions and rarefactions in the sound wave, cannot go abruptly to zero 
after passing the edge of an object. This is because there is interaction 
between the adjacent molecules that are propagating the wave. In order to 
allow the compressions and rarefactions to die out gracefully in the bound-
ary between the wave and the shadow, there must be a region in which part 
of the propagating wave changes direction, and it is this bent part of the 
wave that forms the diffracted component.

The degree of diffraction depends on wavelength because it effectively 
takes a certain number of wavelengths for the edge of the wave to make 
the transition to shadow. Thus the amount of diffraction around an edge, 
such as a building or wall, will be greater at low and less at high frequen-
cies. This effect is shown in Figures 1.41 and 1.42. Similar effects occur 
when sound has to pass through an opening, as shown in Figures 1.43 and 
1.44. Here the sound wave is diffracted away from the edges of the opening.  

FIgure �.39
A two-dimensional standing 
wave.

FIgure �.40
Diffraction around an 
object.
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The amount of diffraction depends on the size of the opening relative to the 
wavelength. When the size of the wavelength is large relative to the open-
ing the wave is diffracted strongly, and when the wavelength is small rela-
tive to the opening then the diffraction is low. The transition between the 
wavelength being small and large with respect to the opening occurs when 
the opening size is about two thirds of the wavelength ( 2

3 ).
As well as occurring through openings, diffraction also happens around 

solid objects; one could consider them to be anti-openings, as shown in 
Figures 1.45 and 1.46. Here the wave diffracts around the object and meets 
behind it. The effect is also a function of the size of the object with respect 
to the wavelength. When the size of the wavelength is large relative to the 
object then the wave is diffracted strongly around it and the object has little 

FIgure �.4� Diffraction around an edge 
at low frequencies.

FIgure �.42 Diffraction 
around an edge at high frequencies.

FIgure �.43 Diffraction 
through an opening at low 
frequencies.

FIgure �.44 Diffraction 
through an opening at high 
frequencies.

FIgure �.45 Diffraction around an 
object at low frequencies.

FIgure �.46 Diffraction 
around an object at high 
frequencies.
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influence on the wave propagation. On the other hand, when the wavelength 
is small relative to the object then the diffraction is less, and the object has 
a significant shadow behind it; these effects are shown in Figure 1.46. The 
size at which an object becomes significant with respect to a wavelength is 
when its size is again about two thirds of a wavelength ( 2

3 ).

�.5.�0 Sound scattering
Sound which is incident on an object is not just diffracted around it—some 
of the incident energy will be reflected, or scattered, from the side facing 
the incident wave, as shown in Figure 1.47. As in the case of diffraction, 
it is the size of the object with respect to the wavelength that determines 
how much, and in what way, the energy is scattered. When the object is 
large with respect to the wavelength then most of the sound incident on 
the object is scattered according to the laws of reflection and there is very 
little spreading or diffraction of the reflected wave, as shown in Figure 1.4�.

However, when the object is small with respect to the wavelength only a 
small proportion of the incident energy is scattered and there is a large amount 
of spreading or diffraction of the reflected wave, as shown in Figure 1.47. As in 
the case of diffraction, the size at which the object becomes significant is when 
it is about two thirds of a wavelength (

2
3 ). Thus objects smaller than this 

will tend to scatter the energy in all directions whereas objects bigger than this 
will be more directional.

In addition to the scattering effects, interference effects happen when the 
scattering object is about two thirds of a wavelength ( 2

3 ) in size. This is 
because at this frequency both reflection from, and diffraction around, the 
object is occurring. In this situation the waves on the two sides of the object 
can influence or interact with each other. This results in enhanced reflection 
from, or diffraction around, the object at particular wavelengths. The precise 
nature of these effects depends on the interaction between the front and back 

of the scattering object and so 
will be significantly affected by its 
shape. Thus the variation in scat-
tering will be different for a sphere 
compared with rectangular plate. 
As the sum of energy diffracted 
around the object and the scat-
tered energy must be constant, 
the reflection and diffraction 
responses will be complementary.

FIgure �.47 Scattering from an 
object at low frequencies.

FIgure �.48 Scattering from an 
object at high frequencies.
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�.6 tIme aNd FrequeNCY dOmaINS

So far we have mainly considered a sound wave to be a sinusoidal wave at a 
particular frequency. This is useful as it allows us to consider aspects of sound 
propagation in terms of the wavelength. However, most musical sounds have 
a waveform that is more complex than a simple sine wave; a variety of wave-
forms are shown in Figure 1.49. So how can we analyze real sound wave-
forms, and make sense of them in acoustical terms? The answer is based on 
the concept of superposition and a technique called Fourier analysis.

�.6.� What is Fourier theory?
Fourier analysis is a way of building up a waveform from much simpler 
bits. There are many ways of building up complex waveforms from sim-
ple basic shapes, like rectangles, but Fourier analysis was developed (by a 
French mathematician called ��ean Baptiste ��oseph Fourier in 1�07) to solve 
the problem of heat diffusion in a metal bar! His idea was very simple. He 
built up the more complicated shapes of the functions, or waveforms, that 
he was studying by using the humble sine wave. He found that by adding 
together sine waves with different frequencies, phases and amplitudes he 
could, very accurately, approximate the functions he was interested in. He 
found that using sine waves as a basis for approximation was a very useful 
thing to do. For a start different sine wave frequencies were independent, 
from, or; more strictly, orthogonal to, each other and so could be manip-
ulated, or used in equations, independently of each other. That is, if you 
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FIgure �.49
Waveforms from musical 
instruments.
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solved the equations for each sine wave independently, then you had the 
solution for the whole waveform. As finding the solution for each sine wave 
was much easier, this was a great advantage. This principle—that the sum 
of the solutions is the same as the solution of the sum of the sine waves—
is called superposition and is a powerful aspect of the Fourier approach.

Fourier further theorized that if he combined enough sine waves together 
he could exactly model any waveform in existence. This allowed him to 
develop the Fourier transform pair—two equations that provide a means of 
transforming the time domain into the frequency domain and back.

These techniques are useful because sometimes it’s easier to think 
about some processes in one domain rather than the other. For example, 
it’s much easier to think about filtering, resonance, and modes of vibration 
in the frequency domain rather than the time domain. Furthermore, the 
fact that the basis functions are sine waves, which have a direct physical 
analog, is useful when dealing with the real world. The next section gives 
a simple, non-mathematical introduction to Fourier analysis. More details 
may be found in Appendix 1 and Bracewell (1999).

�.6.2 the spectrum of periodic sound waves
Fourier theory states that any waveform can be built up by using an appro-
priate set of sine waves of different frequencies, amplitudes and phases. To 
see how this might work consider the situation shown in Figure 1.50. This 
shows four sine waves whose frequencies are 1F Hz, 3F Hz, 5F Hz, and 
7F Hz, whose phase is zero (that is, they all start from the same value, as 
shown by the dotted line in Figure 1.50) and whose amplitude is inversely 
proportional to the frequency. This means that the 3F Hz component is 
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3F Hz
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FIgure �.50
The effect of adding several 
harmonically related sine 
waves together.
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1/3 the amplitude of the component at 1F Hz, and so on. When these sine 
waves are added together, as shown in Figure 1.50, the result approximates 
a square wave, and, if more high-frequency components were added, it 
would become progressively closer to an ideal square wave. The higher fre-
quency components are needed in order to provide the fast rise, and sharp 
corners, of the square wave.

In general, as the rise time gets faster, and/or the corners get sharper, 
then more high-frequency sine waves are required to represent the wave-
form accurately. In other words we can look at a square wave as a waveform 
that is formed by summing together sine waves which are odd multiples of 
its fundamental frequency and whose amplitudes are inversely proportional 
to frequency. A sine wave represents a single frequency and therefore a sine 
wave of a given amplitude can be plotted as a single line on a graph of ampli-
tude versus frequency. The components of a square wave plotted in this 
form are shown in Figure 1.51, which clearly shows that the square wave 
consists of a set of progressively reducing discrete sine wave components at 
odd multiples of the lowest frequency. This representation is called the fre-
quency domain representation, or spectrum, of a waveform and the wave-
form’s amplitude versus time plot is called its time domain representation.

The individual sine wave components of the waveform are often called 
the partials of the waveform. If they are integer related, as in the square 
wave, then they can be called harmonics. The lowest frequency is called the 
fundamental, or first harmonic, and the higher frequency harmonics are 
labeled according to their frequency multiple relative to the fundamental.  
Thus the second harmonic is twice the frequency of the fundamental and 
so on. Partials on the other hand need not be harmonically related to the 
fundamental, and are numbered in their order of appearance with frequency.  
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However, as we shall see later, this results in a waveform that is a peri-
odic. So for the square wave the second partial is the third harmonic and 
the third partial is the fifth harmonic. Other waveforms have different fre-
quency domain representations, because they are made up of sine waves of 
different amplitudes and frequencies. Some examples of other waveforms 
in both the time and frequency domains are shown in Chapter 3.

�.6.3 the effect of phase
The phase, which expresses the starting value of the individual sine wave 
components, also affects the waveshape. Figure 1.52 shows what happens to 
a square wave if alternate partials are subtracted rather than added, and this 
is equivalent to changing the phase of these components by 1�0°; that is, 
alternate frequency components start from halfway around the circle com-
pared with the other components, as shown by the dotted line in Figure 1.52.  
However, although the time domain waveform is radically different the fre-
quency domain is very similar, as the amplitudes are identical—only the 
phase of some of the harmonics has changed.

Interestingly, in many cases, the resulting wave is perceived as sounding 
the same, even though the waveform is different. This is because the ear, as 
we will see later, appears to be less sensitive to the phase of the individual fre-
quency compared with the relative amplitudes. However, if the phase changes 
are extreme enough we can hear a difference (see Schroeder, 1975). Because of 
this, often only the amplitudes of the frequency components are plotted in the 
spectrum and, in order to handle the range of possible amplitudes and because 
of the way we perceive sound, the amplitudes are usually plotted as decibels. 
For example, Figure 4.24 in Chapter 4 shows the waveform and spectrum 
plotted in this fashion for middle C played on a clarinet and tenor saxophone.
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�.6.4 the spectrum of non-periodic sound waves
So far, only the spectrum of waveforms which are periodic, that is, have 
pitch, has been considered. However, some instruments, especially percus-
sion, do not have pitch and hence are non-periodic, or aperiodic. How can 
we analyze these instruments in terms of a basic waveform, such as a sine 
wave, which is inherently periodic? The answer is shown in Figure 1.53. 
Here the square wave example discussed earlier has had four more sine 
waves added to it. However, these sine waves are between the harmonics 
of the square wave and so are unrelated to the period, but they do start off 
in phase with the harmonics. The effect of these other components is to 
start canceling out the repeat periods of the square waves, because they are 
not related in frequency to them. By adding more components which sit in 
between the harmonics, this cancellation of the repeats becomes more effec-
tive so that when in the limit, the whole space between the harmonics is 
filled with sine wave components of the appropriate amplitude and phase. 
These extra components will add constructively only at the beginning of the 
waveform and will interfere with successive cycles due to their different fre-
quencies. Therefore, in this case, only one square wave will exist.

Thus the main difference between the spectrum of periodic and aperi-
odic waveforms is that periodic waveforms have discrete partials, which can 
be represented as lines in the spectrum with a spacing that is inversely pro-
portional to the period of the waveform. Aperiodic waveforms by contrast 
will have a spectrum which is continuous and therefore does not have any 
discrete components. However, the envelope of the component amplitudes 
as a function of frequency will be the same for both periodic and aperiodic 
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waves of the same shape, as shown in Figure 1.54. Figure 3.6 in Chapter 3 
shows the aperiodic waveform and spectrum of a brushed snare.

�.7 aNaLYzINg SpeCtra

Because the spectrum of a sound is an important part of the way we per-
ceive it, there is often a need to look at the spectrum of a real signal. The 
way this is achieved is to use a bank of filters, as shown in Figure 1.55.

�.7.� Filters and filter types
A filter is a device which separates out a portion of the frequency spec-
trum of a sound signal from the total; this is shown in Figure 1.56. There 
are four basic types of filter, which are classified in terms of their effect 
as a function of signal frequency. This is known as the filters’ “frequency 
response.” These basic types of filter are as follows:

n Low-pass: The filter only passes frequencies below a frequency known 
as the filter’s “cut-off frequency.”

n High-pass: The filter only passes frequencies above the cut-off 
frequency.

n Band-pass: The filter passes a range of frequencies between two cut-
off frequencies. The frequency range between the cut-off frequencies 
is the filter’s “bandwidth.”

n Band-reject: The filter rejects a range of frequencies between two cut-
off frequencies.
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The effects of these four types of filter are shown in Figure 1.56 and one 
can see that a bank of band-pass filters are the most appropriate for analyz-
ing the spectrum of a sound wave. Note that although practical filters have 
specified cut-off frequencies which are determined by their design, they do 
not cut off instantly as the frequency changes. Instead they take a finite fre-
quency range to attenuate the signal.

The effect of a filter on a spectrum is multiplicative in that the output 
spectrum after filtering is the product of the filter’s frequency response with 
the input signal’s spectrum. Thus we can easily determine the effect of a given 
filter on a signal’s spectrum. This is a useful technique which can be applied 
to the analysis of musical instruments, as we shall see later, by treating some 
of their characteristics as a form of filtering. In fact, filtering can be carried 
out using mechanical, acoustical and electrical means, and many instruments 
perform some form of filtering on the sounds they generate (see Chapter 4).

�.7.2 Filter time responses
There is a problem, however, with filtering a signal in order to derive the 
spectrum and this is the effect of the filter on the time response of the sig-
nal. Most filters have a time response due to the fact that they do not allow 
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all frequencies to pass through—if they did they wouldn’t be filters! Why do 
such filters have a time response? The answer can be obtained by reconsid-
ering the Fourier analysis approach to analyzing a sound signal. For exam-
ple, if a signal is low-pass filtered such that the maximum frequency is 
Fmax, then there can be no sine waves with a frequency greater than Fmax in 
the output. As a sine wave has a slope which is a function of its frequency, 
the maximum rate of change in the output will be determined by the fre-
quency of Fmax. Any faster rate of change would require higher frequency 
sine waves that are no longer present, as shown in Figure 1.57 which shows 
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the effect of low-pass filtering a square wave such that only the first two 
partials are passed, as shown in Figure 1.5�.

A similar argument can used for band-pass filters. In this case there is a 
maximum range of frequencies that can be passed around a given frequency. 
Although the sine waves corresponding to the band-pass frequencies will be 
passed, and they may be at quite a high frequency, their amplitude envelope 
cannot vary quickly, as shown in Figure 1.59. This is because the speed of 
variation of the envelope depends on the number of, and total frequency 
occupied by, the sine wave components in the output of the filter, as shown 
in Figure 1.60. As it is the amplitude variation of the output of a band-
pass filter that carries the information, it too has an inherent time response 
which is a function of its bandwidth.
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Thus all filters have a time response which is a function of the fre-
quency range or bandwidth of the signals that they pass. Note that this 
is an inherent problem that cannot be solved by technology. The time 
response of a filter is inversely proportional to the bandwidth so a narrow- 
band filter has a slow rise and fall time whereas a wide-band filter has 
faster rise and fall times. In practice this effect means that if the frequency 
resolution of the spectral analysis is good, implying the use of narrow-
band analysis filters, then the time response is poor and there is significant 
smearing of the signal. On the other hand if the time response is good then 
the frequency resolution will be poor, because the filter bandwidths will 
have to be wider.
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�.7.3 time responses of acoustic systems
This argument can be reversed to show that when the output of an acous-
tic system, such as a musical instrument, changes slowly then its spec-
trum occupies a narrow bandwidth, whereas when it changes quickly then 
it must occupy a larger bandwidth. This can be due to an increase in the 
number of harmonics present in the spectrum, as would be the case if the 
waveform becomes sharper or more spiky.

Figure 1.61 shows the effect of an increasing number of harmonics on a 
square wave. Or, as in the band-pass case described earlier, it would be due 
to an increase in the bandwidths occupied by the individual partials, or har-
monics, of the sound. This would be the case if the envelope of the sound 
changed more rapidly. Figures 1.62 and 1.63 show this effect, which in this 
case compares two similar systems—one with a slow and one with a fast 
rate of amplitude decay, the latter being due to a higher loss of energy from 
the system. The figure clearly shows that in the system which decays more 
rapidly there are more harmonics and there is a higher bandwidth due to 
the more rapid change in the sound’s envelope.

�.7.4 time and frequency representations of sounds
Figure 1.64 is a useful way of showing both the time and frequency char-
acteristics of a sound signal at the same time, called a spectrogram. In this 
representation the spectrum of a signal is plotted as a function of time, 
with frequency and time forming the main axes. The decibel amplitude of 
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the signal is plotted as a gray scale with black representing a high ampli-
tude and white representing a low amplitude. This representation is an 
excellent way of seeing the time evolution of the spectral components of a 
musical sound. However, it does suffer from the time smearing effects dis-
cussed earlier.

Figure 1.64 shows both narrow-band and broad-band analysis of the 
note at the beginning of a harpsichord piece. In the narrow-band ver-
sion, although the harmonics are clearly resolved, the start of the signal is 
smeared due to the slow time response of the narrow-band filters. On the 

0.0 0.5 1.0 1.5 2.0
Time

Broader
bandwidth

Narrower
bandwidth

FIgure �.62
The decay rate of two 
systems with different 
bandwidths.

0

5

10

15

20

25

300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Frequency (in Hz)

Faster decay

Slower decay

R
el

at
iv

e 
re

sp
on

se

FIgure �.63
The response of two 
systems with different 
decay times.



7�1.7 Analyzing Spectra
other hand the broad-band version has excellent time response and even 
shows the periodic variation in amplitude due to the pitch of the sound, 
shown as vertical striations in the spectrogram; however, it is unable to 
resolve the harmonics of the signal.
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Ideally one would like a filter which has a fast time response and a nar-
row bandwidth, but this is impossible. However, as we shall see later, the 
human hearing system is designed to provide a compromise which gives 
both good frequency and time resolution.

In this chapter we have examined many aspects of sound waveforms 
and their characteristics. However, sound by itself is useless unless it is 
heard and therefore we must consider the way in which we hear sound in 
order to fully understand the nature of musical instruments and musical 
signal processing. This is the subject of the next chapter.
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Psychoacoustics is the study of how humans perceive sound. To begin 
our exploration of psychoacoustics it is first necessary to become familiar 
with the basic anatomy of the human hearing system to facilitate under-
standing of:

n the effect the normal hearing system has on sounds entering the ear;
n the origin of fundamental psychoacoustic findings relevant to the 

perception of music;
n how listening to very loud sounds can cause hearing damage; and
n some of the listening problems faced by the hearing impaired.

This chapter introduces the main anatomical structures of the human 
hearing system which form the path along which incoming music signals 
travel up to the point where the signal is carried by nerve fibers from the 
ear(s) to the brain. It also introduces the concept of “critical bands”, which 
is the single most important psychoacoustic principle for an understanding 
of the perception of music and other sounds in terms of pitch, loudness 
and timbre.

It should be noted that many of the psychoacoustic effects have been 
observed experimentally, mainly as a result of playing sounds that are 
carefully controlled in terms of their acoustic nature to panels of listeners 
from whom responses are monitored. These responses are often the result 
of comparing two sounds and indicating, for example, which is louder or 
higher in pitch or “brighter.” Many of the results from such experiments 
cannot as yet be described in terms of either where anatomically or by what 
physical means they occur. Psychoacoustics is a developing field of research. 
However, the results from such experiments give a firm foundation for 
understanding the nature of human perception of musical sounds, and 
knowledge of minimum changes that are perceived provide useful guideline 
bounds for those exploring the subtleties of sound synthesis.

2.1 tHe aNatOMy OF tHe HearINg SySteM

The anatomy of the human hearing system is illustrated in Figure 2.1. It 
consists of three sections:

n the outer ear,
n the middle ear, and
n the inner ear.

The anatomical structure of each of these is discussed below, along with 
the effect that each has on the incoming acoustic signal.
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2.1.1 Outer ear function
The outer ear (see Figure 2.1) consists of the external flap of tissue known as 
the “pinna” with its many grooves, ridges and depressions. The depression 
at the entrance to the auditory canal is known as the “concha.” The audi-
tory canal is approximately 25–35 mm long from the concha to the “tym-
panic membrane,” more commonly known as the “eardrum.” The outer ear 
has an acoustic effect on sounds entering the ear in that it helps us both  
to locate sound sources and it enhances some frequencies with respect  
to others.

Sound localization is helped mainly by the acoustic effect of the pinna 
and the concha. The concha acts as an acoustic resonant cavity. The com-
bined acoustic effects of the pinna and concha are particularly useful for 
determining whether a sound source is in front or behind, and to a lesser 
extent whether it is above or below.

The acoustic effect of the outer ear as a whole serves to modify the 
 frequency response of incoming sounds due to resonance effects, primarily 
of the auditory canal whose main resonance frequency is in the region 
around 4 kHz.

The tympanic membrane is a light, thin, highly elastic structure which 
forms the boundary between the outer and middle ears. It consists of three 
layers: the outside layer which is a continuation of the skin lining of the 
auditory canal, the inside layer which is continuous with the mucous 
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 lining of the middle ear, and the layer in between these which is a fibrous 
 structure which gives the tympanic membrane its strength and elasticity. 
The tympanic membrane converts acoustic pressure variations from the 
outside world into mechanical vibrations in the middle ear.

2.1.2 Middle ear function
The mechanical movements of the tympanic membrane are transmitted 
through three small bones known as “ossicles,” comprising the “malleus,” 
“incus” and “stapes”—more commonly known as the “hammer,” “anvil” 
and “stirrup”—to the oval window of the cochlea (see Figure 2.1). The oval 
window forms the boundary between the middle and inner ears.

The malleus is fixed to the middle fibrous layer of the tympanic 
membrane in such a way that when the membrane is at rest, it is pulled 
inwards. Thus the tympanic membrane when viewed down the audi-
tory canal from outside appears concave and conical in shape. One end 
of the stapes, the stapes footplate, is attached to the oval window of the 
cochlea. The malleus and incus are joined quite firmly such that at nor-
mal intensity levels they act as a single unit, rotating together as the tym-
panic membrane vibrates to move the stapes via a ball and socket joint 
in a piston-like manner. Thus acoustic vibrations are transmitted via the 
tympanic membrane and ossicles as mechanical movements to the cochlea 
of the inner ear.

The function of the middle ear is twofold: (1) to transmit the move-
ments of the tympanic membrane to the fluid which fills the cochlea with-
out significant loss of energy, and (2) to protect the hearing system to some 
extent from the effects of loud sounds, whether from external sources or 
the individual concerned.

In order to achieve efficient transfer of energy from the tympanic mem-
brane to the oval window, the effective pressure acting on the oval win-
dow is arranged by mechanical means to be greater than that acting on the 
tympanic membrane. This is to overcome the higher resistance to move-
ment of the cochlear fluid compared with that of air at the input to the ear. 
Resistance to movement can be thought of as “impedance” to movement 
and the impedance of fluid to movement is high compared with that of air. 
The ossicles act as a mechanical “impedance converter” or “impedance 
transformer” and this is achieved essentially by two means:

n the lever effect of the malleus and incus; and
n the area difference between the tympanic membrane and the stapes 

footplate.
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The lever effect of the malleus and incus arises as a direct result of the dif-
ference in their lengths. Figure 2.2 shows this effect. The force at the stapes 
footplate relates to the force at the tympanic membrane by the ratio of the 
lengths of the malleus and incus as follows:

 F L F L1 1 2 2    
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The area difference has a direct effect on the pressure applied at the stapes 
footplate compared with the incoming pressure at the tympanic membrane 
since pressure is expressed as force per unit area as follows:

 
Pressure

Force
Area


 

(2.2)

The areas of the tympanic membrane and the stapes footplate in humans 
are represented in Figure 2.2 as A1 and A2 respectively. The pressure at the 
tympanic membrane (P1) and the pressure at the stapes footplate (P2) can 
therefore be expressed as follows:
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The forces can therefore be expressed in terms of pressures:
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Substituting Equations 2.3 and 2.4 into Equation 2.1 gives:
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Pickles (1982) describes a third aspect of the middle ear which appears 
relevant to the impedance conversion process. This relates to a buckling 
motion of the tympanic membrane itself as it moves, resulting in a twofold 
increase in the force applied to the malleus.

In humans, the area of the tympanic membrane (A1) is approximately 
13 times larger than the area of the stapes footplate (A2), and the malleus 
is approximately 1.3 times the length of the incus. The buckling effect of 
the tympanic membrane provides a force increase by a factor of 2. Thus the 
pressure at the stapes footplate (P2) is about (13  1.3  2  33.8) times 
larger than the pressure at the tympanic membrane (P1).
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exaMpLe 2.1

express the pressure ratio between the stapes footplate and the tympanic membrane 
in decibels.
The pressure ratio is 33.8:1. Equation 1.20 is used to convert from pressure ratio to 
decibels:

dB SPL
P
P

( ) log 20
2
110

Substituting 33.8 as the pressure ratio gives:

20 33 8 30 610log [ . ] . dB

The second function of the middle ear is to provide some protection for 
the hearing system from the effects of loud sounds, whether from external 
sources or the individual concerned. This occurs as a result of the action of 
two muscles in the middle ear: the tensor tympani and the stapedius mus-
cle. These muscles contract automatically in response to sounds with levels 
greater than approximately 75 dB(SPL) and they have the effect of increas-
ing the impedance of the middle ear by stiffening the ossicular chain. This 
reduces the efficiency with which vibrations are transmitted from the tym-
panic membrane to the inner ear and thus protects the inner ear to some 
extent from loud sounds. Approximately 12–14 dB of attenuation is provided 
by this protection mechanism, but this is for frequencies below 1 kHz only. 
The names of these muscles derive from where they connect with the ossicu-
lar chain: the tensor tympani is attached to the “handle” of the malleus, near 
the tympanic membranes, and the stapedius muscle attached to the stapes.

This effect is known as the “acoustic reflex.” It takes some 60–120 ms 
for the muscles to contract in response to a loud sound. In the case of a 
loud impulsive sound such as the firing of a large gun, it has been sug-
gested that the acoustic reflex is too slow to protect the hearing system. 
In gunnery situations, a sound loud enough to trigger the acoustic reflex, 
but not so loud as to damage the hearing systems, is often played at least 
120 ms before the gun is fired.

2.1.3 Inner ear function
The inner ear consists of the snail-like structure known as the “cochlea.” 
The function of the cochlea is to convert mechanical vibrations into nerve 
firings to be processed eventually by the brain. Mechanical vibrations reach 
the cochlea at the oval window via the stapes footplate of the middle ear.
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The cochlea consists of a tube coiled into a spiral with approximately 
2.75 turns—see Figure 2.3(a). The end with the oval and round windows is 
the “base” and the other end is the “apex”—see Figure 2.3(b). Figure 2.3(c)  
illustrates the effect of slicing through the spiral vertically, and it can be 
seen in (d) that the tube is divided into three sections by Reissner’s mem-
brane and the basilar membrane. The outer channels—the scala ves-
tibuli (V) and scala tympani (T)—are filled with an incompressible fluid 
known as “perilymph,” and the inner channel is the scala media (M). The 
scala vestibuli terminates at the oval window and the scala tympani at  
the round window. An idealized unrolled cochlea is shown in Figure 2.3(b). 
There is a small hole at the apex known as the “helicotrema” through which  
the perilymph fluid can flow.

Input acoustic vibrations result in a piston-like movement of the stapes 
footplate at the oval window, which moves the perilymph fluid within the 
cochlea. The membrane covering the round window moves to compensate 
for oval window movements since the perilymph fluid is essentially incom-
pressible. Inward movements of the stapes footplate at the oval window 
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section through the cochlea. (d) Detailed view of the cochlear tube.
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cause the round window to move outwards, and outward movements of the 
stapes footplate cause the round window to move inwards. These move-
ments cause traveling waves to be set up in the scala vestibuli which dis-
place both Reissner’s membrane and the basilar membrane.

The basilar membrane is responsible for carrying out a frequency analysis 
of input sounds. In shape, the basilar membrane is both narrow and thin at 
the base end of the cochlea, becoming both wider and thicker along its length 
to the apex, as illustrated in Figure 2.4. The upper part of Figure 2.4 shows 
the idealized shape of the basilar membrane where it sits along the unrolled 
cochlea—compare with Figure 2.3(b), which illustrates that the width and 
depth of the basilar membrane are narrowest at the base and they increase 
towards the apex. The basilar membrane vibrates in response to stimulation 
by signals in the audio frequency range.

Small structures respond better to higher frequencies than do large struc-
tures (compare, for example, the sizes of a violin and a double bass or the 
strings at the treble and bass ends of a piano). The basilar membrane there-
fore responds best to high frequencies where it is narrow and thin (at the 
base) and to low frequencies where it is wide and thick (at the apex). Since 
its thickness and width change gradually along its length, input pure tones 
at different frequency will produce a maximum basilar membrane move-
ment at different positions or “places” along its length.

This is illustrated in Figure 2.5 for a section of the length of the 
 membrane. This is the basis of the “place” analysis of sound by the hearing 
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system. The extent, or “envelope,” of basilar membrane movement is 
 plotted against frequency in an idealized manner for five input pure tones 
of different frequencies. If the input sound were a complex tone consisting 
of many components, the overall basilar membrane response is effectively 
the sum of the responses for each individual component. The basilar mem-
brane is stimulated from the base end (see Figure 2.3) which responds best 
to high frequencies, and it is important to note that its envelope of move-
ment for a pure tone (or individual component of a complex sound) is not 
symmetrical, but that it tails off less rapidly towards high frequencies than 
towards low frequencies. This point will be taken up again in Chapter 5.

The movement of the basilar membrane for input sine waves at differ-
ent frequencies has been observed by a number of researchers following the 
pioneering work of von Békésy (1960). They have confirmed that the point 
of maximum displacement along the basilar membrane changes as the fre-
quency of the input is altered. It has also been shown that the linear dis-
tance measured from the apex to the point of maximum basilar membrane 
displacement is directly proportional to the logarithm of the input fre-
quency. The frequency axis in Figure 2.5 is therefore logarithmic. It is illus-
trated in the figure as being “back-to-front” (i.e., with increasing frequency 
changing from right to left, low frequency at the apex and high at the 
base) to maintain the left to right sense of flow of the input acoustic signal 
and to reinforce understanding of the anatomical nature of the inner ear.  
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The section of the inner ear which is responsible for the analysis of low-
 frequency sounds is the end farthest away from the oval window, coiled into 
the center of the cochlear spiral.

In order that the movements of the basilar membrane can be transmit-
ted to the brain for further processing, they have to be converted into nerve 
firings. This is the function of the organ of Corti, which consists of a num-
ber of hair cells that trigger nerve firings when they are bent. These hair 
cells are distributed along the basilar membrane and they are bent when 
it is displaced by input sounds. The nerves from the hair cells form a spi-
ral bundle known as the “auditory nerve.” The auditory nerve leaves the 
cochlea as indicated in Figure 2.1.

2.2 CrItICaL BaNDS

Section 2.1 describes how the inner ear carries out a frequency analysis 
of sound due to the mechanical properties of the basilar membrane and 
how this provides the basis behind the “place” theory of hearing. The next 
important aspect of the place theory to consider is how well the hearing 
system can discriminate between individual frequency components of an 
input sound. This will provide the basis for understanding the resolution of 
the hearing system and it will underpin discussions relating to the psycho-
acoustics of how we hear music, speech and other sounds.

Each component of an input sound will give rise to a displacement of 
the basilar membrane at a particular place, as illustrated in Figure 2.5. The 
displacement due to each individual component is spread to some extent 
on either side of the peak. Whether or not two components that are of simi-
lar amplitude and close together in frequency can be discriminated depends 
on the extent to which the basilar membrane displacements, due to each of 
the two components, are clearly separated.

Consider track 1 on the accompanying CD. Suppose two pure tones, or 
sine waves, with amplitudes A1 and A2 and frequencies F1 and F2 respec-
tively are sounded together. If F1 is fixed and F2 is changed slowly from being 
equal to or in unison with F1 either upwards or downwards in frequency, the 
following is generally heard (see Figure 2.6). When F1 is equal to F2, a single 
note is heard. As soon as F2 is moved higher or lower than F1 a sound with 
clearly undulating amplitude variations known as “beats” is heard. The fre-
quency of the beats is equal to (F2  F1), or (F1  F2) if F1 is greater than F2, 
and the amplitude varies between (A1  A2) and (A1  A2), or (A1  A2) and 
(A2  A1) if A2 is greater than A1. Note that when the amplitudes are equal 
(A1  A2) the amplitude of the beats varies between (2  A1) and 0.
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For the majority of listeners beats are usually heard when the frequency 
difference between the tones is less than about 12.5 Hz, and the sensation 
of beats generally gives way to one of a “fused” tone which sounds “rough” 
when the frequency difference is increased above 15 Hz. As the frequency 
difference is increased further there is a point where the fused tone gives 
way to two separate tones but still with the sensation of roughness, and a 
further increase in frequency difference is needed for the rough sensation 
to become smooth. The smooth separate sensation persists while the two 
tones remain within the frequency range of the listener’s hearing.

The changes from fused to separate and from beats to rough to smooth are 
shown hashed in Figure 2.6 to indicate that there is no exact frequency differ-
ence at which these changes in perception occur for every listener. However, 
the approximate frequencies and order in which they occur is common to all 
listeners, and, in common with most psychoacoustic effects, average values are 
quoted which are based on measurements made for a large number of listeners.

The point where the two tones are heard as being separate as opposed to 
fused when the frequency difference is increased can be thought of as the point 
where two peak displacements on the basilar membrane begin to emerge from 
a single maximum displacement on the membrane. However, at this point 
the underlying motion of the membrane, which gives rise to the two peaks, 
causes them to interfere with each other giving the rough sensation, and it 
is only when the rough sensation becomes smooth that the separation of the 
places on the membrane is sufficient to fully resolve the two tones. The fre-
quency difference between the pure tones at the point where a listener’s per-
ception changes from rough and separate to smooth and separate is known as 
the “critical bandwidth,” and it is therefore marked CB in the figure. A more 
formal definition is given by Scharf (1970): “The critical bandwidth is that 
bandwidth at which subjective responses rather abruptly change.”
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CB 15 15 CB0
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(F1 constant)

FIgure 2.6 An illustration of the perceptual changes which occur when a pure tone fixed at 
frequency F1 is heard combined with a pure tone of variable frequency F2.
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In order to make use of the notion of critical bandwidth practically, an 
equation relating the effective critical bandwidth to the filter center fre-
quency was proposed by Glasberg and Moore (1990). They define a filter 
with an ideal rectangular frequency response curve which passes the same 
power as the auditory filter in question, which is known as the “equivalent 
rectangular bandwidth” or “ERB.” The ERB is a direct measurement of the 
critical bandwidth, and the Glasberg and Moore equation which allows the 
calculation of the ERB for any filter center frequency is as follows:

 ERB Hzc   { . [( . ) ]}24 7 4 37 1f  (2.6)

where fc  the filter center frequency in kHz
and ERB  the equivalent rectangular bandwidth in Hz  

Equation valid for (100 Hz  fc  10 000 Hz)

This relationship is plotted in Figure 2.7 and lines representing where 
the bandwidth is equivalent to 1, 2, 3, 4, and 5 semitones (or a semitone, 
whole tone, minor third, major third and perfect fourth respectively) are 
also plotted for comparison purposes. A third octave filter is often used in 
the studio as an approximation to the critical bandwidth; this is shown in 
the figure as the 4 semitone line (there are 12 semitones per octave, so a 
third of an octave is 4 semitones). A keyboard is shown on the filter center 
frequency axis for convenience, with middle C marked with a spot.
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FIgure 2.7 The variation of equivalent rectangular bandwidth (ERB) with filter center frequency 
and lines indicating where the bandwidth would be equivalent to 1, 2, 3, 4 and 5 semitones. (Middle C 
is marked with a spot on the keyboard.)
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The change in critical bandwidth with frequency can be demonstrated if the 
fixed frequency F1 in Figure 2.6 is altered to a new value and the new posi-
tion of CB is found. In practice, critical bandwidth is usually measured by 
an effect known as “masking” (see Chapter 5) in which the “rather abrupt 
change” is more clearly perceived by listeners.

The response characteristic of an individual filter is illustrated in the 
bottom curve in Figure 2.8, the vertical axis of which is marked “filter 
response” (notice that increasing frequency is plotted from right to left in 
this figure in keeping with Figure 2.5 relating to basilar membrane dis-
placement). The other curves in the figure are idealized envelopes of basilar 
membrane displacement for pure tone inputs spaced by f Hz, where f is the 
distance between each vertical line as marked. The filter center frequency 
Fc Hz is indicated with an unbroken vertical line, which also represents the 
place on the basilar membrane corresponding to a frequency Fc Hz. The 
filter response curve is plotted by observing the basilar membrane displace-
ment at the place corresponding to Fc Hz for each input pure tone and 
plotting this as the filter response at the frequency of the pure tone. This 
results in the response curve shape illustrated as follows.

As the input pure tone is raised to Fc Hz, the membrane displacement 
gradually increases with the less steep side of the displacement curve. As 
the frequency is increased above Fc Hz, the membrane displacement falls 
rapidly with the steeper side of the displacement curve. This results in the 
filter response curve as shown, which is an exact mirror image about Fc Hz 
of the basilar membrane displacement curve.

Figure 2.9(a) shows the filter response curve plotted with increasing fre-
quency and plotted more conventionally from left to right in order to facili-
tate discussion of the psychoacoustic relevance of its asymmetric shape in 
Chapter 5.

exaMpLe 2.2

Calculate the critical bandwidth at 200 Hz and 2000 Hz to three significant 
figures.
Using Equation 2.6 and substituting 200 Hz and 2000 Hz for fc (noting that fc should be 
expressed in kHz in this equation as 0.2 kHz and 2 kHz respectively) gives the critical 
bandwidth (ERB) as:

ERB at Hz Hz200 24 � 4 3� 0 2 1 46 3    { . [( . . ) ]} .

ERB at Hz Hz2000 24 � 4 3� 2 1 241    { . [( . ) ]}



872.2 Critical Bands
Fc � (2 * f)

Fc � (2 * f)

Fc

f

Frequency

F
ilt

er
re

sp
on

se

F
c

F
c  �

 (4 *  f)

F
c  �

 (2 *  f)

F
c  �

 (6 *  f)

F
c  �

 (2 *  f)

F
c  �

 (4 *  f)

D
is

pl
ac

em
en

t e
nv

el
op

es
 fo

r 
in

pu
t p

ur
e 

to
ne

s

Fc � (4 * f)

FIgure 2.8 Derivation of response of an auditory filter with center frequency Fc Hz based on 
idealized envelope of basilar membrane movement to pure tones with frequencies local to the center 
frequency of the filter.
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The action of the basilar membrane can be thought of as being equivalent 
to a large number of overlapping band-pass filters, or a “bank” of band-pass 
filters, each responding to a particular band of frequencies (see Chapter 1). 
Based on the idealized filter response curve shape in Figure 2.9(a), an illus-
tration of the nature of this bank of filters is given in Figure 2.9(b). Each 
filter has an asymmetric shape to its response with a steeper roll-off on the 
high-frequency side than on the low-frequency side; the bandwidth of a par-
ticular filter is given by the critical bandwidth (see Figure 2.7) for any partic-
ular center frequency. It is not possible to be particularly exact with regard to 
the extent to which the filters overlap. A common practical compromise, for 
example, in studio third octave graphic equalizer filter banks, is to overlap 
adjacent filters at the 3 dB points on their response curves.

In terms of the perception of two pure tones illustrated in Figure 2.6, the 
“critical bandwidth” can be thought of as the bandwidth of the band-pass 
filter in the bank of filters, the center frequencies of which are exactly half-
way between the frequencies of the two tones. This ignores the asymme-
try of the basilar membrane response (see Figure 2.5) and the consequent 
asymmetry in the individual filter response curve—see Figure 2.9(a)—but it 
provides a good working approximation for calculations. Such a filter (and 
others close to it in center frequency) would capture both tones while they 
are perceived as “beats,” “rough fused” or “rough separate,” and at the point 
where rough changes to smooth, the two tones are too far apart to be both 
captured by this or any other filter. At this point there is no single filter 
which captures both tones, but there are filters which capture each of the 
tones individually and they are therefore resolved and the two tones are 
perceived as being “separate and smooth.”

A musical sound can be described by the frequency components which 
make it up, and an understanding of the application of the critical band 
mechanism in human hearing in terms of the analysis of the components 
of musical sounds gives the basis for the study of psychoacoustics. The 
resolution with which the hearing system can analyze the individual com-
ponents or sine waves in a sound is important for understanding psycho-
acoustic discussions relating to, for example, how we perceive:

n melody
n harmony
n chords
n tuning
n intonation
n musical dynamics
n the sounds of different instruments
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n blend
n ensemble
n interactions between sounds produced simultaneously by different 

instruments.

2.3 FrequeNCy aND preSSure SeNSItIvIty raNgeS

The human hearing system is usually quoted as having an average 
 frequency range of 20–20 000 Hz, but there can, however, be quite marked 
differences between individuals. This frequency range changes as part of the 
human aging process, particularly in terms of the upper limit which tends 
to reduce. Healthy young children may have a full hearing frequency range 
up to 20 000 Hz, but, by the age of 20, the upper limit may have dropped 
to 16 000 Hz. From the age of 20, it continues to reduce gradually. This is 
usually known as “presbyacusis,” or less commonly as “presbycusis,” and is 
a function of the normal aging process.

This reduction in the upper frequency limit of the hearing range is 
accompanied by a decline in hearing sensitivity at all frequencies with age, 
the decline being less for low frequencies than for high as shown in Figure 
2.10 (consider track 2 on the accompanying CD). The figure also shows 
that this natural loss of hearing sensitivity and loss of upper frequencies is 
more marked for men than for women. Hearing losses can also be induced 
by other factors such as prolonged exposure to loud sounds (see Section 
2.5), particularly with some of the high sound levels now readily available 
from electronic amplification systems, whether reproduced via loudspeak-
ers or particularly via headphones.

The ear’s sensitivity to sounds of different frequencies varies over a  
vast sound pressure level range. On average, the minimum sound pressure 
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variation which can be detected by the human hearing system around 4 kHz 
is approximately 10 micropascals (10  Pa), or 105 Pa. The maximum aver-
age sound pressure level which is heard rather than perceived as being pain-
ful is 64 Pa. The ratio between the loudest and softest is therefore:
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This is a very wide range variation in terms of the numbers involved, and it is 
not a convenient one to work with. Therefore sound pressure level (SPL) is rep-
resented in decibels relative to 20  Pa (see Chapter 1), as dB(SPL) as follows:
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exaMpLe 2.3

Calculate the threshold of hearing and threshold of pain in dB(SpL).
The threshold of hearing at 1 kHz is, in fact, pref which in dB(SPL) equals:
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and the threshold of pain is 64 Pa which in dB(SPL) equals:
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Use of the dB(SPL) scale results in a more convenient range of values (0 to 
130) to consider, since values in the range of about 0 to 100 are common in 
everyday dealings. Also, it is a more appropriate basis for expressing acous-
tic amplitude values, changes in which are primarily perceived as variations 
in loudness since loudness perception turns out to be essentially logarith-
mic in nature.
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The threshold of hearing varies with frequency. The ear is far more 
sensitive in the middle of its frequency range than at the high and low 
extremes. The lower curve in Figure 2.11 is the general shape of the aver-
age threshold of hearing curve for sinusoidal stimuli between 20 Hz and 
20 kHz. The upper curve in the figure is the general shape of the threshold 
of pain, which also varies with frequency but not to such a great extent. It 
can be seen from the figure that the full 130 dB(SPL) range, or “dynamic 
range,” between the threshold of hearing and the threshold of pain exists 
at approximately 4 kHz, but that the dynamic range available at lower and 
higher frequencies is considerably less. For reference, the sound level and 
frequency range for both average normal conversational speech and music 
are shown in Figure 2.11, while Table 2.1 shows approximate sound levels 
of everyday sounds for reference.

2.4 LOuDNeSS perCeptION

Although the perceived loudness of an acoustic sound is related to its 
amplitude, there is not a simple one-to-one functional relationship. As a 
psychoacoustic effect it is affected by both the context and nature of the 
sound. It is also difficult to measure because it is dependent on the inter-
pretation by listeners of what they hear. It is neither ethically appropriate 
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nor technologically possible to put a probe in the brain to ascertain the 
loudness of a sound.

In Chapter 1 the concepts of the sound pressure level and sound 
intensity level were introduced. These were shown to be approximately 
equivalent in the case of free space propagation in which no interference 
effects were present. The ear is a pressure sensitive organ that divides the 
audio spectrum into a set of overlapping frequency bands whose band-
width increases with frequency. These are both objective descriptions of 
the amplitude and the function of the ear. However, they tell us noth-
ing about the perception of loudness in relation to the objective measures 
of sound amplitude level. Consideration of such issues will allow us to 
understand some of the effects that occur when one listens to musical 
sound sources.

The pressure amplitude of a sound wave does not directly relate to its 
perceived loudness. In fact it is possible for a sound wave with a larger 
pressure amplitude to sound quieter than a sound wave with a lower pres-
sure amplitude. How can this be so? The answer is that the sounds are 
at different frequencies and the sensitivity of our hearing varies as the 

table 2.1 Typical sound levels in the environment

example sound/situation dB(SpL) Description

Long range gunfire at gunner’s ear 140

Threshold of pain 130 Ouch!

Jet take-off at approximately 100 m 120

Peak levels on a night club dance floor 110

Loud shout at 1 m 100 Very noisy

Heavy truck at about 10 m  90

Heavy car traffic at about 10 m  8080

Car interior  �0�0 Noisy

Normal conversation at 1 m  6060

Office noise level  �0�0

Living room in a quiet area  4040 Quiet

Bedroom at night time  3030

Empty concert hall  2020

Gentle breeze through leaves  1010 Just audible

Threshold of hearing for a child   00
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 frequency varies. Figure 2.12 shows the equal loudness contours for the 
human ear. These contours, originally measured by Fletcher and Munson 
(1933) and by others since, represent the relationship between the mea-
sured sound pressure level and the perceived loudness of the sound. The 
curves show how loud a sound must be in terms of the measured sound 
pressure level to be perceived as being of the same loudness as a 1 kHz tone 
of a given level. There are two major features to take note of, which are dis-
cussed below.

The first is that there are some humps and bumps in the contours above 
1 kHz. These are due to the resonances of the outer ear. Within the outer 
ear there is a tube about 25 mm long with one open and one closed end. 
This will have a first resonance at about 3.4 kHz and, due to its non-uni-
form shape, a second resonance at approximately 13 kHz, as shown in the 
figure. The effect of these resonances is to enhance the sensitivity of the 
ear around the resonant frequencies. Note that because this enhancement is 
due to an acoustic effect in the outer ear it is independent of signal level.

The second effect is an amplitude dependence of sensitivity which is 
due to the way the ear transduces and interprets the sound and, as a result, 
the frequency response is a function of amplitude. This effect is particularly 
noticeable at low frequencies but there is also an effect at higher frequencies. 
The net result of these effects is that the sensitivity of the ear is a function 
of both frequency and amplitude. In other words the frequency response of 
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the ear is not flat and is also dependent on sound level. Therefore two tones 
of equal sound pressure level will rarely sound equally loud. For example, a 
sound at a level which is just audible at 20 Hz would sound much louder if 
it was at 4 kHz. Tones of different frequencies therefore have to be at differ-
ent sound pressure levels to sound equally loud and their relative loudness 
will also be a function of their absolute sound pressure levels.

The loudness of sine wave signals, as a function of frequency and sound 
pressure levels, is given by the “phon” scale. The phon scale is a subjective 
scale of loudness based on the judgments of listeners to match the loud-
ness of tones to reference tones at 1 kHz. The curve for N phones inter-
sects 1 kHz at N dB(SPL) by definition, and it can be seen that the relative 
shape of the phon curves flattens out at higher sound levels, as shown in 
Figure 2.12. The relative loudness of different frequencies is not preserved, 
and therefore the perceived frequency balance of sound varies as the listen-
ing level is altered. This is an effect that we have all heard when the volume 
of a recording is turned down and the bass and treble components appear 
suppressed relative to the midrange frequencies, and the sound becomes 
“duller” and “thinner.” Ideally we should listen to reproduced sound at the 
level at which it was originally recorded. However, in most cases this would 
be antisocial, especially as much rock material is mixed at levels in excess 
of 100 dB(SPL)!

In the early 1970s hi-fi manufacturers provided a “loudness” but-
ton which put in a bass and treble boost in order to flatten the Fletcher–
Munson curves, and so provide a simple compensation for the reduction 
in hearing sensitivity at low levels. The action of this control was wrong in 
two important respects:

n Firstly, it directly used the equal loudness contours to perform the 
compensation, rather than the difference between the curves at 
two different absolute sound pressure levels, which would be more 
accurate. The latter approach has been used in professional products 
to allow nightclubs to achieve the equivalent effect of a louder replay 
level.

n Secondly, the curves are a measure of the equal loudness for sine 
waves at a similar level. Real music on the other hand consists of 
many different frequencies at many different amplitudes and does 
not directly follow these curves as its level changes. We shall see later 
how we can analyze the loudness of complex sounds. In fact because 
the response of the ear is dependent on both absolute sound pressure 
level and frequency it cannot be compensated for simply by using 
treble and bass boost.
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2.4.1 Measuring loudness
These effects make it difficult to design a meter which will give a reading 
which truly relates to the perceived loudness of a sound, so an instrument 
which gives an approximate result is usually used. This is achieved by using 
the sound pressure level but frequency weighting it to compensate for the 
variation of sensitivity of the ear as a function of frequency. Clearly the opti-
mum compensation will depend on the absolute value of the sound pres-
sure level being measured and so some form of compromise is necessary.

Figure 2.13 shows two frequency weightings which are commonly used 
to perform this compensation—termed “A” and “C” weightings. The “A” 
weighting is most appropriate for low amplitude sounds as it broadly com-
pensates for the low-level sensitivity versus frequency curve of the ear. The 
“C” weighting on the other hand is more suited to sound at higher absolute 
sound pressure levels and because of this is more sensitive to low-frequency 
components than the “A” weighting. The sound levels measured using the 
“A” weighting are often given in the unit dBA, and levels using the “C” 
weighting in dBA. Despite the fact that it is most appropriate for low sound 
levels, and is a reasonably good approximation there, the “A” weighting is 
now recommended for any sound level in order to provide a measure of 
consistency between measurements.

The frequency weighting is not the only factor which must be consid-
ered when using a sound level meter. In order to obtain an estimate of the 
sound pressure level it is necessary to average over at least one cycle, and 
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FIgure 2.13 The frequency response of “A” and “C” weightings.
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preferably more, of the sound waveform. Thus most sound level meters 
have slow and fast time response settings. The slow time response gives an 
estimate of the average sound level whereas the fast response tracks more 
rapid variations in the sound pressure level.

Sometimes it is important to be able to calculate an estimate of the 
equivalent sound level experienced over a period of time. This is especially 
important when measuring people’s noise exposure in order to see if they 
might suffer noise-induced hearing loss. This cannot be done using the 
standard fast or slow time responses on a sound level meter; instead a spe-
cial form of measurement known as the “Leq” (pronounced L E Q) measure-
ment is used.

This measure integrates the instantaneous squared pressure over some 
time interval, such as 15 min or 8 h, and then takes the square root of the 
result. This provides an estimate of the root mean square level of the signal 
over the time period of the measurement and so gives the equivalent sound 
level for the time period. That is, the output of the Leq measurement is 
the constant sound pressure level, which is equivalent to the varying sound 
level over the measurement period. The Leq measurement also provides a 
means of estimating the total energy in the signal by squaring its output. A 
series of Leq measurements over short times can also be easily combined to 
provide a longer time Leq measurement by simply squaring the individual 
results, adding them together, and then taking the square root of the result, 
as shown in Equation 2.7.

 
L L L L neq total eq eq eq( )    2

1
2

2
2…

 (2.7)

 
where the individual short time  measurementseq 1 eqL Ln( ) 

 

This extendibility makes the Leq measurement a powerful method of noise 
monitoring. As with a conventional instrument, the “A” or “C” weightings 
can be applied.

2.4.2 Loudness of simple sounds
In Figure 2.10 the two limits of loudness are illustrated: the threshold of 
hearing and the threshold of pain. As we have already seen, the sensitivity 
of the ear varies with frequency and therefore so does the threshold of hear-
ing, as shown in Figure 2.14. The peak sensitivities shown in this figure 
are equivalent to a sound pressure amplitude in the sound wave of 10 Pa 
or about 6 dB(SPL). Note that this is for monaural listening to a sound 
presented at the front of the listener. For sounds presented on the listening 
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side of the head there is a rise in peak sensitivity of about 6 dB due to the 
increase in pressure caused by reflection from the head. There is also some 
evidence that the effect of hearing with two ears is to increase the sensitiv-
ity by between 3 and 6 dB.

At 4 kHz, which is about the frequency of the sensitivity peak, the pres-
sure amplitude variations caused by the Brownian motion of air molecules, 
at room temperature and over a critical bandwidth, correspond to a sound 
pressure level of about 23 dB. Thus the human hearing system is close 
to the theoretical physical limits of sensitivity. In other words there would 
be little point in being much more sensitive to sound, as all we would hear 
would be a “hiss” due to the thermal agitation of the air! Many studio and 
concert hall designers now try to design the building such that environmen-
tal noise levels are lower than the threshold of hearing, and so are inaudible.

The second limit is the just noticeable change in amplitude. This is 
strongly dependent on the nature of the signal, its frequency, and its ampli-
tude. For broad-band noise the just noticeable difference in amplitude is 
0.5 to 1 dB when the sound level lies between 20 and 100 dB(SPL) relative 
to a threshold of 0 dB(SPL). Below 20 dB(SPL) the ear is less sensitive to 
changes in sound level. For pure sine waves, however, the sensitivity to 
change is markedly different and is a strong function of both amplitude and 
frequency. For example, at 1 kHz the just noticeable amplitude change var-
ies from 3 dB at 10 dB(SPL) to 0.3 dB at 80 dB(SPL).
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This variation occurs at other frequencies as well but in general the 
just noticeable difference at other frequencies is greater than the values for 
1–4 kHz. These different effects make it difficult to judge exactly what dif-
ference in amplitude would be noticeable as it is clearly dependent on the 
precise nature of the sound being listened to. There is some evidence that 
once more than a few harmonics are present the just noticeable difference 
is closer to the broad-band case, of 0.5–1 dB, rather than the pure tone case. 
As a general rule of thumb the just noticeable difference in sound level is 
about 1 dB.

The mapping of sound pressure change to loudness variation for larger 
changes is also dependent on the nature of the sound signal. However, for 
broad-band noise, or sounds with several harmonics, it is generally accepted 
that a change of about 10 dB in SPL corresponds to a doubling or halving of 
perceived loudness. However, this scaling factor is dependent on the nature 
of the sound, and there is some dispute over both its value and its validity.

exaMpLe 2.4

Calculate the increase in the number of violinists required to double the loudness 
of a string section, assuming all the violinists play at the same sound level.
From Chapter 1 the total level from combining several uncorrelated sources is given by:

P P NN  uncorrelated 

This can be expressed in terms of the SPL as:

SPL SPL NN  uncorrelated single source  10 10log ( )

In order to double the loudness we need an increase in SPL of 10 dB. Since 10 
log(10)  10, ten times the number of sources will raise the SPL by 10 dB.

Therefore we must increase the number of violinists in the string section by a factor 
of ten in order to double their volume.

As well as frequency and amplitude, duration also has an effect on the per-
ception of loudness, as shown in Figure 2.15 for a pure tone. Here we can 
see that once the sound lasts more than about 200 milliseconds then its 
perceived level does not change. However, when the tone is shorter than 
this the perceived amplitude reduces. The perceived amplitude is inversely 
proportional to the length of the tone burst. This means that when we lis-
ten to sounds which vary in amplitude the loudness level is not perceived 
significantly by short amplitude peaks, but more by the sound level aver-
aged over 200 milliseconds.
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2.4.3 Loudness of complex sounds
Unlike tones, real sounds occupy more than one frequency. We have already 
seen that the ear separates sound into frequency bands based on critical 
bands. The brain seems to treat sounds within a critical band differently to 
those outside its frequency range and there are consequential effects on the 
perception of loudness.

The first effect is that the ear seems to lump all the energy within a crit-
ical band together and treat it as one item of sound. So when all the sound 
energy is concentrated within a critical band the loudness is proportional to 
the total intensity of the sound within the critical band. That is:

 Loudness  ∝ P P Pn1
2

2
2 2  …

 (2.8)

where the pressures of the  individual frequency comP nn1  pponents  

As the ear is sensitive to sound pressures, the sound intensity is pro-
portional to the square of the sound pressures, as discussed in Chapter 1. 
Because the acoustic intensity of the sound is also proportional to the sum 
of the squared pressure, the loudness of a sound within a critical band is 
independent of the number of frequency components so long as their total 
acoustic intensity is constant. When the frequency components of the sound 
extend beyond a critical band, an additional effect occurs due to the presence 
of components in other critical bands. In this case more than one critical 
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band is contributing to the perception of loudness and the brain appears to 
add the individual critical band responses together. The effect is to increase 
the perceived loudness of the sound even though the total acoustic intensity 
is unchanged.

Figure 2.16 shows a plot of the subjective loudness perception of a sound at 
a constant intensity level as a function of the sound’s bandwidth, which illus-
trates this effect. In the cochlea the critical bands are determined by the place 
at which the peak of the standing wave occurs; therefore all energy within a 
critical band will be integrated as one overall effect at that point on the basilar 
membrane and transduced into nerve impulses as a unit. On the other hand, 
energy which extends beyond a critical band will cause other nerves to fire and 
it is these extra nerve firings which give rise to an increase in loudness.

The interpretation of complex sounds which cover the whole frequency 
range is further complicated by psychological effects, in that a listener will 
attend to particular parts of the sound, such as the soloist, or conversation, 
and ignore or be less aware of other sounds, and will tend to base their per-
ception of loudness on what they have attended to.

Duration also has an effect on the perception of the loudness of complex 
tones in a similar fashion to that of pure tones. As is the case for pure 
tones, complex tones have an amplitude which is independent of duration 
once the sound is longer than about 200 milliseconds, and is inversely pro-
portionate to duration when the duration is less than this.
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2.5 NOISe-INDuCeD HearINg LOSS

The ear is a sensitive and accurate organ of sound transduction and analysis. 
However, the ear can be damaged by exposure to excessive levels of sound or 
noise. This damage can manifest itself in two major forms:

n A loss of hearing sensitivity: The effect of noise exposure causes the 
efficiency of the transduction of sound into nerve impulses to reduce. 
This is due to damage to the hair cells in each of the organs of Corti. 
Note this is different from the threshold shift due to the acoustic 
reflex, which occurs over a much shorter time period and is a form 
of built-in hearing protection. This loss of sensitivity manifests 
itself as a shift in the threshold of hearing of someone who has been 
exposed to excessive noise, as shown in Figure 2.17. This shift in 
the threshold can be temporary, for short times of exposures, but 
ultimately it becomes permanent as the hair cells are permanently 
flattened as a result of the damage, due to long-term exposure, which 
does not allow them time to recover.

n A loss of hearing acuity: This is a more subtle effect, but in many 
ways is more severe than the first effect. We have seen that a crucial 
part of our ability to hear and analyze sounds is our ability to 
separate out the sounds into distinct frequency bands, called critical 
bands. These bands are very narrow. Their narrowness is due to an 
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active mechanism of positive feedback in the cochlea which enhances 
the standing wave effects mentioned earlier. This enhancement 
mechanism is very easily damaged; it appears to be more sensitive 
to excessive noise than the main transduction system. The effect 
of the damage though is not just to reduce the threshold but also to 
increase the bandwidth of our acoustic filters, as shown in idealized 
form in Figure 2.18. This has two main effects: firstly, our ability 
to separate out the different components of the sound is impaired, 
and this will reduce our ability to understand speech or separate out 
desired sound from competing noise. Interestingly it may well make 
musical sounds that were consonant more dissonant because of the 
presence of more than one frequency harmonic in a critical band; 
this will be discussed in Chapter 3. The second effect is a reduction 
in the hearing sensitivity, also shown in Figure 2.18, because the 
enhancement mechanism also increases the amplitude sensitivity of 
the ear. This effect is more insidious because the effect is less easy to 
measure and perceive; it manifests itself as a difficulty in interpreting 
sounds rather than a mere reduction in their perceived level.

Another related effect due to damage to the hair cells is noise-induced tinni-
tus. Tinnitus is the name given to a condition in which the cochlea sponta-
neously generates noise, which can be tonal or random noises, or a mixture 
of the two. In noise-induced tinnitus exposure to loud noise triggers this, 
and, as well as being disturbing, there is some evidence that people who 
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suffer from this complaint may be more sensitive to noise-induced hearing 
damage.

Because the damage is caused by excessive noise exposure, it is more 
likely at the frequencies at which the acoustic level at the ear is enhanced. 
The ear is most sensitive at the first resonance of the ear canal, or about 
4 kHz, and this is the frequency at which most hearing damage first shows 
up. Hearing damage in this region is usually referred to as an “audiometric 
notch” because of its distinctive shape on an audiogram (once the results 
have been plotted following a hearing test); see Figure 2.19. (Hearing testing 
using audiograms and the dBHL scale are described in detail in Section 7.2.)  
This distinctive pattern is evidence that the hearing loss measured is due 
to noise exposure rather than some other condition, such as the inevitable 
high-frequency loss due to aging.

How much noise exposure is acceptable? There is some evidence that 
the levels of noise generated by our normal noisy Western society have 
some long-term effects because measurements on the hearing of other cul-
tures show a much lower threshold of hearing at a given age compared with 
that of Westerners. However, this may be due to other factors as well, for 
example the level of pollution. But strong evidence exists demonstrating 
that exposure to noises with amplitudes of greater than 90 dBA can cause 
permanent hearing damage. This fact is recognized, for example, by UK 
legislation, which requires that the noise exposure of workers be less than 
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this limit, known as the “second action limit.” This level has been reduced 
since April 2006 under European legislation to 85 dBA. If the work environ-
ment has a noise level greater than the second action limit, then employ-
ers are obliged to provide hearing protection for employees of a sufficient 
standard to bring the noise level at the ear below this figure. There is also 
a “first action level,” which is 5 dB below the second action level, and if 
employees are subjected to this level (now 80 dBA in Europe), then employ-
ees can request hearing protection which must be made available.

Please be aware that the regulations vary by country. Readers should 
check their local regulations for noise exposure in practice.

2.5.1 Integrated noise dose
However, in many musical situations the noise level is greater than 90 dBA 
for short periods. For example, the audience at a concert may well experi-
ence brief peaks above this, especially at particular instants in works such 
as Elgar’s Dreams of Gerontius, or Orff ’s Carmina Burana. Also, in many 
practical industrial and social situations the noise level may be louder than 
the second action level of 85 dBA, in Europe, for only part of the time. How 
can we relate intermittent periods of noise exposure to continuous noise 
exposure? For example, how damaging is a short exposure to a sound of 
96 dBA? The answer is to use a similar technique to that used in assessing 
the effect of radiation exposure, that is, “integrated dose.”

The integrated noise dose is defined as the equivalent level of the sound 
over a fixed period of time, which is currently 8 hours. In other words the 
noise exposure can be greater than the second action level provided that it 
is for an appropriately shorter time, which results in a noise dose that is 
less than that which would result from being exposed to noise at the sec-
ond action level for 8 hours. The measure used is the Leq mentioned earlier 
and the maximum dose is 85 dBLeq over 8 hours. This means that one can 
be exposed to 88 dBA for 4 hours, 91 dBA for 2 hours, and so on.

Figure 2.20 shows how the time of exposure varies with the sound 
level on linear and logarithmic timescales for the second action level in 
Europe. It can be seen that exposure to extreme sound levels, greater than 
100 dBA, can only be tolerated for a very short period of time, less than half  
an hour. There is also a limit to how far this concept can be taken because 
very loud sounds can rupture the eardrum causing instant, and sometimes 
permanent, loss of hearing.

This approach to measuring the noise dose takes no account of the 
spectrum of the sound which is causing the noise exposure, because to do 
so would be difficult in practice. However, it is obvious that the effect of a 
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pure tone at 85 dBA on the ear is going to be different from the same level 
spread over the full frequency range. In the former situation there will be 
a large amount of energy concentrated at a particular point on the basi-
lar membrane and this is likely to be more damaging than the second case 
in which the energy will be spread out over the full length of the mem-
brane. Note that the specification for noise dose uses “A” weighting for the 

FIgure 2.20 Maximum exposure time as a function of sound level plotted on a linear scale 
(upper) and a logarithmic scale (lower).
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 measurement which, although it is more appropriate for low rather than 
high sound levels, weights the sensitive 4 kHz region more strongly.

2.5.2 protecting your hearing
Hearing loss is insidious and permanent, and by the time it is measurable 
it is too late. Therefore in order to protect hearing sensitivity and acuity 
one must be proactive. The first strategy is to avoid exposure to excess 
noises. Although 85 dB(SPL) is taken as a damage threshold if the noise 
exposure causes ringing in the ears, especially if the ringing lasts longer 
than the length of exposure, it may be that damage may be occurring even 
if the sound level is less than 85 dB(SPL).

There are a few situations where potential damage is more likely:

n The first is when listening to recorded music through headphones, as 
even small ones are capable of producing damaging sound levels.

n The second is when one is playing music, with either acoustic or 
electric instruments, as these are also capable of producing damaging 
sound levels, especially in small rooms with a “live” acoustic; see 
Chapter 6.

In both cases the levels are under your control and so can be reduced. 
However, there is an effect called the acoustic reflex (see Section 2.1.2), 
which reduces the sensitivity of your hearing when loud sounds occur. This 
effect, combined with the effects of temporary threshold shifts, can result 
in a sound level increase spiral where there is a tendency to increase the 
sound level “to hear it better,” which results in further dulling, etc. The 
only real solution is to avoid the loud sounds in the first place. However, 
if this situation does occur then a rest away from the excessive noise will 
allow some sensitivity to return.

There are sound sources over which one has no control, such as bands, 
discos, nightclubs, and power tools. In these situations it is a good idea 
either to limit the noise dose or, better still, use some hearing protection. 
For example, one can keep a reasonable distance away from the speakers 
at a concert or disco. It takes a few days, or even weeks in the case of hear-
ing acuity, to recover from a large noise dose so one should avoid going to a 
loud concert, or nightclub, every day of the week!

The authors regularly use small “in-ear” hearing protectors when they 
know they are going to be exposed to high sound levels, and many profes-
sional sound engineers also do the same. These have the advantage of being 
unobtrusive and reduce the sound level by a modest, but useful, amount 
(15–20 dB) while still allowing conversation to take place at the speech 
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 levels required to compete with the noise! These devices are also available 
with a “flat” attenuation characteristic with frequency and so do not alter 
the sound balance too much, and cost less than a CD recording. For very 
loud sounds, such as those emitted by power tools, a more extreme form of 
hearing protection may be required, such as headphone style ear defenders.

Your hearing is essential, and irreplaceable, for the enjoyment of music, 
for communicating, and for socializing with other people. Now and in the 
future, it is worth taking care of.

2.6 perCeptION OF SOuND SOurCe DIreCtION

How do we perceive the direction that a sound arrives from? The answer 
is that we make use of our two ears, but how? Because our two ears are 
separated by our head, this has an acoustic effect which is a function of the 
direction of the sound. There are two effects of the separation of our ears 
on the sound wave: firstly, the sounds arrive at different times and, sec-
ondly, they have different intensities. These two effects are quite different 
so let us consider them in turn.

2.6.1 Interaural time difference (ItD)
Consider the model of the head, shown in Figure 2.21, which shows the 
ears relative to different sound directions in the horizontal plane. Because 
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FIgure 2.21 The effect of the direction of a sound source with respect to the head.
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the ears are separated by about 18 cm there will be a time difference 
between the sound arriving at the ear nearest the source and the one fur-
ther away. So when the sound is off to the left the left ear will receive the 
sound first, and when it is off to the right the right ear will hear it first. If 
the sound is directly in front, or behind, or anywhere on the median plane, 
the sound will arrive at both ears simultaneously. The time difference 
between the two ears will depend on the difference in the distances that the 
two sounds have to travel. A simplistic view might just allow for the fact 
that the ears are separated by a distance d and therefore calculate the effect 
of angle on the relative time difference by considering only the extra length 
introduced due to the angle of incidence, as shown in Figure 2.22. This 
assumption will give the following equation for the time difference due to 
sound angle:

 
 t

d
c

 sin( )θ

 

 

where the time difference between the ears in s
the 

∆t
d





( )
ddistance between the ears in m

the angle of arrival of
( )

θ    the sound from the median in radians

and the speed of

( )

c    sound (in ms1)  

d
d sinθ

θ

Sound
source

FIgure 2.22 A simple model for the interaural time difference.
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Unfortunately this equation is wrong. It underestimates the delay between 
the ears because it ignores the fact that the sound must travel around the 
head in order to get to them. This adds an additional delay to the sound, as 
shown in Figure 2.23. This additional delay can be calculated, provided one 
assumes that the head is spherical, by recognizing that the distance traveled 
around the head for a given angle of incidence is given by:

  d rθ  

where the extra path round the head at a given angle of∆d    
incidence in m

and half the distance between the ears
( )

r    in m( )

This equation can be used in conjunction with the extra path length due 
to the angle of incidence, which is now a function of r, as shown in Figure 
2.24, to give a more accurate equation for the ITD as:

 
ITD

r
c


(θ θsin( ))

 
(2.9)

Using this equation we can find that the maximum ITD, which occurs at 
90° or (p/2 radians), is:
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FIgure 2.23 The effect of the path length around the head on the interaural time difference.
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This is a very small delay but a variation from this to zero determines 
the direction of sounds at low frequencies. Figure 2.25 shows how this 
delay varies as a function of angle, where positive delay corresponds to a 
source at the right of the median plane and negative delay corresponds to 
a source on the left. Note that there is no difference in the delay between 
front and back positions at the same angle. This means that we must use 
different mechanisms and strategies to differentiate between front and back 
sounds. There is also a frequency limit to the way in which sound direc-
tion can be resolved by the ear in this way. This is due to the fact that the 
ear appears to use the phase shift in the wave caused by the interaural time 
difference to resolve the direction; that is, the ear measures the phase shift 
given by:

 Φ p θ θITD  2 fr( sin( ))  

 

where the phase difference between the ears in radiaITDΦ  ( nns
and the frequency in Hz

)
( )f   

When this phase shift is greater than p radians (180°) there will be an unre-
solvable ambiguity in the direction because there are two possible angles—
one to the left and one to the right—that could cause such a phase shift. 
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FIgure 2.24 A better model for the interaural time difference.
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This sets a maximum frequency, at a particular angle, for this method of 
sound localization, which is given by:

 
fmax  m

( )
. ( sin( ))

θ
θ θ


  

1
2 0 09  

which for an angle of 90° is:

 
fmax /

 m / /
 Hz( )

. ( sin( ))
θ p

p p
 

  
2

1
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743
 

Thus for sounds at 90° the maximum frequency that can have its direction 
determined by phase is 743 Hz. However, the ambiguous frequency limit 
would be higher at smaller angles.

2.6.2 Interaural intensity difference (IID)
The other cue that is used to detect the direction of the sound is the differing 
levels of intensity that result at each ear due to the shading effect of the head. 
This effect is shown in Figure 2.26 which shows that the levels at each ear 
are equal when the sound source is on the median plane but that the level at 
one ear progressively reduces, and increases at the other, as the source moves 
away from the median plane. The level reduces in the ear that is furthest away  
from the source. The effect of the shading of the head is harder to calculate 
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FIgure 2.25 The interaural time difference (ITD) as a function of angle.
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but experiments seem to indicate that the intensity ratio between the two 
ears varies sinusoidally in a frequency dependent fashion, from 0 dB up to 
20 dB, depending on the sound direction, as shown in Figure 2.27.

However, as we saw in Chapter 1, an object is not significant as a scat-
terer or shader of sound until its size is about two thirds of a wavelength 
(½), although it will be starting to scatter an octave below that frequency. 
This means that there will be a minimum frequency below which the effect 
of intensity is less useful for localization, which will correspond to when 
the head is about one third of a wavelength in size (1/3). For a head the 
diameter of which is 18 cm, this corresponds to a minimum frequency of:
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Thus the interaural intensity difference is a cue for direction at high 
 frequencies whereas the interaural time difference is a cue for direction at 
low frequencies. Note that the crossover between the two techniques starts 
at about 700 Hz and would be complete at about four times this frequency 
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FIgure 2.26 The effect of the head on the interaural intensity difference.
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at 2.8 kHz. In between these two frequencies the ability of our ears to 
resolve direction is not as good as at other frequencies.

2.6.3 pinnae and head movement effects
The above models of directional hearing do not explain how we can resolve 
front to back ambiguities or the elevation of the source. There are in fact 
two ways which are used by the human being to perform these tasks.

The first is to use the effect of our ears on the sounds we receive to resolve 
the angle and direction of the sound. This is due to the fact that sounds strik-
ing the pinnae are reflected into the ear canal by the complex set of ridges 
that exist on the ear. These pinnae reflections will be delayed, by a very small 
but significant amount, and so will form comb filter interference effects on 
the sound the ear receives. The delay that a sound wave experiences will be 
a function of its direction of arrival, in all three dimensions, and we can use 
these cues to help resolve the ambiguities in direction that are not resolved 
by the main directional hearing mechanism. The delays are very small and 
so these effects occur at high audio frequencies, typically above 5 kHz.

The effect is also person specific, as we all have differently shaped ears 
and learn these cues as we grow up. Thus we get confused for a while when 
we change our acoustic head shape radically, for example by cutting very 
long hair short. We also find that if we hear sound recorded through other 
people’s ears we may have a different ability to localize the sound, because 
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the interference patterns are not the same as those for our ears. In fact, 
sometimes this localization capability is worse than when using our own 
ears and sometimes it is better.

The second, and powerful, means of resolving directional ambiguities is 
to move our heads. When we hear a sound that we wish to attend to, or 
whose direction we wish to resolve, we turn our head towards the sound and 
may even attempt to place it in front of us in the normal direction, where 
all the delays and intensities will be the same. The act of moving our head 
will change the direction of the sound arrival and this change of direction 
will depend on the sound source position relative to us. Thus a sound from 
the rear will move in a different direction compared with a sound in front of 
or above the listener. This movement cue is one of the reasons that we per-
ceive the sound from headphones as being “in the head.” Because the sound 
source tracks our head movement it cannot be outside and hence must be 
in the head. There is also an effect due to the fact that the headphones also 
do not model the effect of the head. Experiments with headphone listening 
which correctly model the head and keep the source direction constant as 
the head moves give a much more convincing illusion.

2.6.4 ItD and IID trading
Because both intensity and delay cues are used for the perception of sound 
source direction one might expect the mechanisms to be in similar areas 
of the brain and linked together. If this were the case one might also rea-
sonably expect that there was some overlap in the way the cues were inter-
preted such that intensity might be confused with delay and vice versa in 
the brain. This allows for the possibility that the effect of one cue, for exam-
ple delay, could be canceled out by the other, for example intensity. This 
effect does in fact happen and is known as “interaural time difference versus 
interaural intensity difference trading.” In effect, within limits, an interau-
ral time delay can be compensated for by an appropriate interaural intensity 
difference, as shown in Figure 2.28, which has several interesting features.

Firstly, as expected, time delay versus intensity trading is only effective 
over the range of delay times which correspond to the maximum interaural 
time delay of 673 s. Beyond this amount of delay, small intensity differ-
ences will not alter the perceived direction of the image. Instead the sound 
will appear to come from the source which arrives first. This effect occurs 
between 673 s and 30 ms. However, if the delayed sound’s amplitude is 
more than 12 dB greater than the first arrival then we will perceive the direc-
tion of the sound to be towards the delayed sound. After 30 ms the delayed 
signal is perceived as an echo and so the listener will be able to differentiate 
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between the delayed and undelayed sound. The implications of these results 
are twofold; firstly, it should be possible to provide directional information 
purely through either only delay cues or only intensity cues. Secondly, once 
a sound is delayed by greater than about 700 s the ear attends to the sound 
that arrives first almost irrespective of the relative levels of the incoming 
sounds, although clearly if the earlier arriving sound is significantly lower in 
amplitude, compared with the delayed sound, then the effect will disappear.

2.6.5 the Haas effect
The second of the ITD and IID trading effects is also known as the “Haas,” 
or “precedence,” effect—named after the experimenter who quantified this 
behavior of our ears. The effect can be summarized as follows:

n The ear will attend to the direction of the sound that arrives first and 
will not attend to the reflections provided they arrive within 30 ms of 
the first sound.

n The reflections arriving before 30 ms are fused into the perception 
of the first arrival. However, if they arrive after 30 ms they will be 
perceived as echoes.

These results have important implications for studios, concert halls and 
sound reinforcement systems. In essence, it is important to ensure that 
the first reflections arrive at the audience earlier than 30 ms to avoid them 
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being perceived as echoes. In fact it seems that our preference is for a delay 
gap of less than 20 ms if the sound of the hall is to be classed as “intimate.” 
In sound reinforcement systems the output of the speakers will often be 
delayed with respect to their acoustic sound but, because of this effect, we 
perceive the sound as coming from the acoustic source, unless the level of 
sound from the speakers is very high.

2.6.6 Stereophonic listening
Because of the way we perceive directional sound it is possible to fool 
the ear into perceiving a directional sound through just two loudspeakers 
or a pair of headphones in stereo listening. This can be achieved in basi-
cally three ways: two using loudspeakers and one using headphones. The 
first two ways are based on the concept of providing only one of the two 
major directional cues in the hearing system; that is, using either intensity 
or delay cues and relying on the effect of the ear’s time–intensity trading 
mechanisms to fill in the gaps. The two systems are as follows:

n Delay stereo: This system is shown in Figure 2.29 and consists of 
two omni-directional microphones spaced a reasonable distance 
apart and away from the performers. Because of the distance of the 
microphones a change in performer position does not alter the sound 
intensity much, but does alter the delay. So the two channels when 

Sound
source

Right channelLeft channel

FIgure 2.29 Delay stereo recording.
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presented over loudspeakers contain predominantly directional cues 
based on delay to the listener.

n Intensity stereo: This system is shown in Figure 2.30 and consists 
of two directional microphones placed together and pointing at 
the left and right extent of the performers’ positions. Because the 
microphones are closely spaced, a change in performer position 
does not alter the delay between the two sounds. However, because 
the microphones are directional the intensity received by the two 
microphones does vary. So the two channels when presented over 
loudspeakers contain predominantly directional cues based on 
intensity to the listener. Intensity stereo is the method that is mostly 
used in pop music production, as the pan-pots on a mixing desk, 
which determine the position of a track in the stereo image, vary the 
relative intensities of the two channels, as shown in Figure 2.31.

These two methods differ primarily in the method used to record the origi-
nal performance and are independent of the listening arrangement, so 
which method is used is determined by the producer or engineer on the 
recording. It is also possible to mix the two cues by using different types of 
microphone arrangement—for example, slightly spaced directional micro-
phones—and these can give stereo based on both cues. Unfortunately they 
also provide spurious cues, which confuse the ear, and getting the balance 

Le
ft 

ch
an

ne
l Right channel

Sound
source

FIgure 2.30 Intensity stereo recording.
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between the spurious and wanted cues, and so providing a good directional 
illusion, is difficult.

n Binaural stereo: The third major way of providing a directional 
illusion is to use binaural stereo techniques. This system is shown in 
Figure 2.32 and consists of two omni-directional microphones placed 
on a head—real or more usually artificial—and presenting the result 
over headphones. The distance of the microphones is identical to the 
ear spacing, and they are placed on an object which shades the sound 
in the same way as a human head, and, possibly, torso. This means 
that a change in performer position provides both intensity and delay 
cues to the listener: the results can be very effective. However, they 
must be presented over headphones because any cross-ear coupling of 
the two channels, as would happen with loudspeaker reproduction, 
would cause spurious cues and so destroy the illusion. Note that 
this effect happens in reverse when listening to loudspeaker stereo 
over headphones, because the cross coupling that normally exists 
in a loudspeaker presentation no longer exists. This is another 
reason why the sound is always “in the head” when listening via 
conventional headphones.

The main compromise in stereo sound reproduction is the presence of spu-
rious direction cues in the listening environment because the loudspeak-
ers and environment will all contribute cues about their position in the 
room, which have nothing to do with the original recording. More informa-
tion about directional hearing and stereophonic listening can be found in 
Blauert (1997) and Rumsey (2001).
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3.1 MuSiCal NOteS

Music of all cultures is based on the use of instruments (including the human 
voice) which produce notes of different pitches. The particular set of pitches 
used by any culture may be unique but the psychoacoustic basis on which 
pitch is perceived is basic to all human listeners. This chapter explores the 
acoustics of musical notes which are perceived as having a pitch, and the psy-
choacoustics of pitch perception. It then considers the acoustics and psycho-
acoustics of different tuning systems that have been used in Western music.

The representation of musical pitch can be confusing because a num-
ber of different notation systems are in use. In this book the system which 
uses A4 to represent the A above middle C has been adopted. The number 
changes between the notes B and C, and capital letters are always used for 
the names of the notes. Thus middle C is C4, the B immediately below it 
is B3, etc. The bottom note on an 88-note piano keyboard is therefore A0 
since it is the fourth A below middle C, and the top note on an 88-note 
piano keyboard is C8. (This notation system is shown for reference against 
a keyboard later in the chapter in Figure 3.21.)

3.1.1 Musical notes and their fundamental frequency
When we listen to a note played on a musical instrument and we perceive it 
as having a clear unambiguous musical pitch, this is because that instrument 
produces an acoustic pressure wave which repeats regularly. For example, 
consider the acoustic pressure waveforms recorded by means of a microphone 
and shown in Figure 3.1 for A4 played on four orchestral instruments: violin, 
trumpet, flute and oboe. Notice that in each case, the waveshape repeats reg-
ularly, or the waveform is “periodic” (see Chapter 1). Each section that repeats 
is known as a “cycle” and the time for which each cycle lasts is known as 
the “fundamental period” or “period” of the waveform. The number of cycles 
which occur in one second gives the fundamental frequency of the note in 
hertz (or Hz). The fundamental frequency is often notated as “f0”, pronounced 
“F zero” or “F nought”, a practice which will be used throughout the rest of 
this book. Thus f0 of any waveform can be found from its period as:

 
(  in Hz)

(period in seconds)
f0

1


 
(3.1)

and the period from a known f0 as:

 
(period in seconds)

 in Hz


1

0f  
(3.2)
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For the violin note shown in Figure 3.1, the f0 equivalent to any cycle can 
be found by measuring the period of that cycle from the waveform plot from 
which the f0 can be calculated. The period is measured from any point in one 
cycle to the point in the next (or last) cycle where it repeats, for example a pos-
itive peak, a negative peak or a point where it crosses the zero amplitude line. 
The distance marked “T” for the violen in the figure shows where the period  

Trumpet

Flute

Violin

Oboe

Time2 ms

T
T

T

T

Figure 3.1 Acoustic pressure waveform of A4 (440 Hz) played on a violin, trumpet, flute and 
oboe. (Note: T indicates one cycle of the waveform.)

exaMple 3.1

Find the period of the note g5, and the note an instrument is playing if its 
measured period is 5.41 ms.
Figure 3.21 gives the f0 of G5 as 784.0 Hz; therefore its period from Equation 3.2 is:

Period of G  in seconds  or ms5
1

784 0
1 27�� 10 1 27��3   

.
. .

The f0 of a note whose measured period is 5.405 ms can be found using Equation 
3.1 as:

f0 3

1

5 41 10
184 8 in Hz  Hz




.
.

The note whose f0 is nearest to 184.8 Hz (from Figure 3.21) is F#3.
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could be measured between negative peaks, and this measurement was 
made in the laboratory to give the period as 2.27 ms. Using Equation 3.1:

 
f0 3

1
2 27

1

2 27 10
440 5 




. ( . )
.

 ms s
 Hz

 

This is close to 440 Hz, which is the tuning reference f0 for A4 (see Figure 
3.21). Variation in tuning accuracy, intonation or, for example, vibrato if 
the note were not played on an open string, will mean that the f0 measured 
for any particular individual cycle is not likely to be exactly equivalent to 
one of the reference f0 values in Figure 3.21. An average f0 measurement 
over a number of individual periods might be taken in practice.

3.1.2 Musical notes and their harmonics
Figure 3.1 also shows the acoustic pressure waveforms produced by other 
instruments when A4 is played. While the periods and therefore the f0 val-
ues of these notes are similar, their waveform shapes are very different. The 
perceived pitch of each of these notes will be A4 and the distinctive sound 
of each of these instruments is related to the differences in the detailed 
shape of their acoustic pressure waveforms, which is how listeners recog-
nize the difference between, for example, a violin, a clarinet and an oboe. 
This is because acoustic pressure variations produced by a musical instru-
ment that impinge on the listener’s tympanic membrane are responsible 
for the pattern of vibration set up on the basilar membrane of that ear. It 
is this pattern of vibration that is then analyzed in terms of the frequency 
components of which they are comprised (see Chapter 2). If the pattern 
of vibration on the basilar membrane varies when comparing different 
sounds, for example from a violin and a clarinet, then the sounds are per-
ceived as having a different “timbre” (see Chapter 5) whether or not they 
have the same pitch.

Every instrument therefore has an underlying set of partials in its spec-
trum (see Chapter 1) from which we are able to recognize it from other 
instruments. These can be thought of as the frequency component “rec-
ipe” underlying the particular sound of that instrument. Figure 3.1 shows 
the acoustic pressure waveform for different notes played on four orches-
tral instruments and Figure 3.2 shows the amplitude–frequency spectrum 
for each. Notice that the shape of the waveform for each of the notes is dif-
ferent and so is the recipe of frequency components. Each of these notes 
would be perceived as being the note A4 but as having different timbres. 
The frequency components of notes produced by any pitched instrument, 



1253.1 Musical Notes
such as a violin, oboe, clarinet, trumpet, etc., are harmonics, or integer  
(1, 2, 3, 4, 5, etc.) multiples of f0 (see Chapter 1). Thus the only possible 
frequency components for the acoustic pressure waveform of the violin note 
shown in Figure 3.1 whose f0 is 440.5 Hz are: 440.5 Hz (1  440.5 Hz); 
881.0 Hz (2  440.5 Hz); 1321.5 Hz (3  440.5 Hz); 1762 Hz (4  440.5 Hz); 
2202.5 Hz (5  440.5 Hz); etc. Figure 3.2 shows that these are the only fre-
quencies at which peaks appear in each spectrum (see Chapter 1). These 
harmonics are generally referred to by their “harmonic number,” which is 
the integer by which f0 is multiplied to calculate the frequency of the particu-
lar component of interest.

Violin

Trumpet

Flute

Oboe

2 4 6 8
Frequency (kHz)

40
dB

40
dB

40
dB

40
dB

Figure 3.2 Spectra of waveforms shown in Figure 3.1 for A4 (f0  440 Hz) played on a violin, 
trumpet, flute and oboe.
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An earlier term still used by many authors for referring to the 
 components of a periodic waveform is “overtones.” The first overtone refers 
to the first frequency component that is “over” or above f0, which is the 
second harmonic. The second overtone is the third harmonic, and so on. 
Table 3.1 summarizes the relationship between f0, overtones and harmon-
ics for integer multipliers from 1 to 10.

table 3.1   The relationship between overtone series, harmonic series and 
fundamental frequency for the first 10 components of a period 
waveform

integer (N) Overtone series  
((N  1)  f0) when N > 1

Harmonic series 
(N    f0)

Component 
frequency (Hz)

 1 fundamental frequency (f0) 1st harmonic  11 f0

 22 1st overtone 2nd harmonic  22 f0

 33 2nd overtone 3rd harmonic  33 f0

 44 3rd overtone 4th harmonic  44 f0

 55 4th overtone 5th harmonic  55 f0

 ���� 5th overtone ��th harmonic  ���� f0

 77 ��th overtone 7th harmonic  77 f0

 88 7th overtone 8th harmonic  88 f0

 ���� 8th overtone ��th harmonic  ���� f0

10 ��th overtone 10th harmonic 10 f0

exaMple 3.2

Find the fourth harmonic of a note whose f0 is 101 Hz, and the sixth overtone of a 
note whose f0 is 120 Hz.
The fourth harmonic has a frequency that is (4 f0), which is (4  101) Hz  404 Hz.

The sixth overtone has a frequency that is (7 f0), which is (7  120) Hz  840 Hz.

There is no theoretical upper limit to the number of harmonics which 
could be present in the output from any particular instrument, although for 
many instruments there are acoustic limits imposed by the structure of the 
instrument itself. An upper limit can be set though, in terms of the number 
of harmonics which could be present based on the upper frequency limit 
of the hearing system, for which a practical limit might be 16 000 Hz (see 
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Chapter 2). Thus an instrument playing the A above middle C, which has 
an f0 of 440 Hz, could theoretically contain 36 (16 000/440) harmonics 
within the human hearing range. If this instrument played a note an octave 
higher, f0 is doubled to 880 Hz, and the output could now theoretically con-
tain 18 (16 000/880) harmonics. This is an increasingly important consid-
eration since although there is often an upper frequency limit to an acoustic 
instrument which is well within the practical upper frequency range of 
human hearing, it is quite possible with electronic synthesizers to produce 
sounds with harmonics which extend beyond this upper frequency limit.

3.1.3 Musical intervals between harmonics
Acoustically, a note perceived to have a distinct pitch contains frequency 
components that are integer multiples of f0 usually known as “harmonics.” 
Each harmonic is a sine wave and since the hearing system analyzes sounds  
in terms of their frequency components it turns out to be highly instructive, in  
terms of understanding how to analyze and synthesize periodic sounds, as 
well as being central to the development of Western musical harmony, to 
consider the musical relationship between the individual harmonics them-
selves. The frequency ratios of the harmonic series are known (see Table 3.1) 
and their equivalent musical intervals, frequency ratios and staff notation in 
the key of C are shown in Figure 3.3 for the first 10 harmonics. The musical 
intervals (apart from the octave) are only approximated on a modern key-
board due to the tuning system used, as discussed in Section 3.3.

The musical intervals of adjacent harmonics in the natural harmonic 
series starting with the fundamental or first harmonic, illustrated on a 

*B   tuned flat

M
in

or
 s

ix
th

8:
5

M
aj

or
 s

ix
th

5:
3

M
in

or
 th

ird
6:

5

M
aj

or
 th

ird
5:

4

P
er

fe
ct

 fo
ur

th
4:

3

P
er

fe
ct

 fi
fth

3:
2

O
ct

av
e

2:
1

H
ar

m
on

ic
nu

m
be

r

10 10 10 109 98 8 8 8876 6 6 6 6
5 5 5 5

6
5 5

4 4 4 4 4
3 3 3 3 3

2

1 1

2 2

Figure 3.3 Frequency ratios and common musical intervals between the first 10 harmonics of 
the natural harmonic series of C3 against a musical stave and keyboard.
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musical stave and as notes on a keyboard in Figure 3.3, are: octave (2:1),  
perfect fifth (3:2), perfect fourth (4:3), major third (5:4), minor third (6:5), 
flat minor third (7:6), sharp major second (8:7), a major whole tone (9:8), and  
a minor whole tone (10:9). The frequency ratios for intervals between non-
adjacent harmonics in the series can also be inferred from the figure. For 
example, the musical interval between the fourth harmonic and the funda-
mental is two octaves and the frequency ratio is 4:1, equivalent to a dou-
bling for each octave. Similarly the frequency ratio for three octaves is 8:1, 
and for a twelfth (octave and a fifth) is 3:1.

Ratios for other commonly used musical intervals can be found from 
the ones just mentioned (musical intervals which occur within an octave 
are illustrated in Figure 3.15). To demonstrate this for a known result, the 
frequency ratio for a perfect fourth (4:3) can be found from that for a per-
fect fifth (3:2) since together they make one octave (2:1): C to G (perfect 
fifth) and G to C (perfect fourth). The perfect fifth has a frequency ratio 3:2 
and the octave a ratio of 2:1. Bearing in mind that musical intervals are 
ratios in terms of their frequency relationships and that any mathematical 
manipulation must therefore be carried out by means of division and mul-
tiplication, the ratio for a perfect fourth is that for an octave divided by that 
for a perfect fifth, or up one octave and down a fifth:

 
Frequency ratio for a perfect fourth     

2
1

3
2

2
1

2
3

4
3  

Two other common intervals are the major sixth and minor sixth, and their 
frequency ratios can be found from those for the minor third and major 
third respectively since in each case they combine to make one octave.

exaMple 3.3

Find the frequency ratio for a major and a minor sixth given the frequency ratios 
for an octave (2:1), a minor third (6:5) and a major third (5:4).
A major sixth and a minor third together span one octave. Therefore:

Frequency ratio for a major sixth      
2
1

��
5

2
1

5
��

10
��

5
3

A minor sixth and a major third together span one octave. Therefore:

Frequency ratio for a minor sixth     
2
1

5
4

2
1

4
5

8
5
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These ratios can also be inferred from knowledge of the musical 
 intervals and the harmonic series. Figure 3.3 shows that the major sixth is 
the interval between the fifth and third harmonics—in this example these 
are G4 and E5—and therefore their frequency ratio is 5:3. Similarly the 
interval of a minor sixth is the interval between the fifth and eighth har-
monics, in this case E5 and C6; therefore the frequency ratio for the minor 
sixth is 8:5. Knowledge of the notes of the harmonic series is both musically 
and acoustically useful and is something that all brass players and organists 
who understand mutation stops (see Section 5.4) are particularly aware of.

Figure 3.4 shows the positions of the first 10 harmonics of A3 
(f0  220.0 Hz), plotted on a linear and a logarithmic axis. Notice that the 
distance between the harmonics is equal on the linear plot and therefore 
the harmonics becomes progressively closer together as frequency increases 
on the logarithmic axis. While the logarithmic plot might appear more 
complex than the linear plot at first glance in terms of the distribution of 
the harmonics themselves, particularly given that nature often appears to 
make use of the most efficient process, notice that when different notes are 
plotted, in this case E4 (f0  329.6 Hz) and A4 (f0  440.0 Hz), the pattern-
ing of the harmonics remains constant on the logarithmic scale but they 
are spaced differently on the linear scale. This is an important aspect of 
timbre perception which will be explored further in Chapter 5.

A3
f0 � 220.0Hz

0 500

200 400 600 1000 2000 4000 6000

1000 1500 2000 2500 3000 3500 4000 4500

A4
f0 � 440.0Hz

A3
f0 � 220.0Hz

A4
f0 � 440.0Hz

Linear frequency (Hz)

Logarithmic frequency (Hz)

E4
f0 � 329.6Hz

E4
f0 � 329.6Hz

Figure 3.4 The positions of the first 10 harmonics of A3 (f0  220 Hz), E4 (f0  330 Hz), and A4 
(f0  440 Hz) on linear (upper) and logarithmic (lower) axes.
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Bearing in mind that the hearing system carries out a frequency analy-
sis due to the place analysis which is based on a logarithmic distribution 
of position with frequency on the basilar membrane, the logarithmic plot 
most closely represents the perceptual weighting given to the harmonics of 
a note played on a pitched instrument.

The use of a logarithmic representation of frequency in perception has 
the effect of giving equal weight to the frequencies of components analyzed 
by the hearing system that are in the same ratio. Figure 3.5 shows a num-
ber of musical intervals plotted on a logarithmic scale and in each case they 
continue up to around the upper useful frequency limit of the hearing sys-
tem. In this case they are all related to A1 (f0  55 Hz) for convenience. 
Such a plot could be produced relative to an f0 value for any note and it is 
important to notice that the intervals themselves would remain a constant 
distance on a given logarithmic scale. This can be readily verified with a 
ruler, for example by measuring the distance equivalent to an octave from 
100 Hz (between 100 and 200 Hz, 200 and 400 Hz, 400 and 800 Hz, etc.) 
on the x axis of Figure 3.5 and comparing this with the distance between 
any of the points on the octave plot. The distance anywhere on a given 
logarithmic axis that is equivalent to a particular ratio such as 2:1, 3:2, 4:3, 
etc. will be the same no matter where on the axis it is measured.

A musical interval ruler could be made which is calibrated in musical 
intervals to enable the frequencies of notes separated by particular intervals 
to be readily found on a logarithmic axis. Such a calibration must, however, 
be carried out with respect to the length of the ratios of interest: octave 
(2:1), perfect fifth (3:2), major sixth (5:3), etc. If the distance equivalent to a 
perfect fifth is added to the distance equivalent to a perfect fourth, the dis-
tance for one octave will be obtained since a fifth plus a fourth equals one 

Logarithmic frequency (Hz)

Minor third
(6:5)

Major sixth
(5:3)

Perfect fourth
(5:4)

Perfect fifth
(3:2)

Octave
(2:1)

Useful frequency range of human hearing

20 40 100 200 400 1000 2000 4000 10 000 20 000

Figure 3.5 Octaves, perfect fifths, perfect fourths, major sixths and minor thirds plotted on a 
logarithmic scale relative to A1 (f0  55 Hz).
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octave. Similarly, if the distance equivalent to a major sixth is added to that 
for a minor third, the distance for one octave will again be obtained since a 
major sixth plus a minor third equals one octave (see Example 3.3).

A doubling (or halving) of a value anywhere on a logarithmic frequency 
scale is equivalent perceptually to a raising (or lowering) by a musical inter-
val of one octave, and multiplying by 3

2 (or by 2
3 ) is equivalent perceptu-

ally to a raising (or lowering) by a musical interval of a perfect fifth, and 
so on. We perceive a given musical interval (octave, perfect fifth, perfect 
fourth, major third, etc.) as being similar no matter where in the frequency 
range it occurs. For example, a two-note chord a major sixth apart whether 
played on two double basses or two flutes gives a similar perception of the 
musical interval. In this way, the logarithmic nature of the place analysis 
mechanism provides a basis for understanding the nature of our perception 
of musical intervals and of musical pitch.

By way of contrast and to complete the story, sounds which have no 
definite musical pitch (but a pitch, nevertheless—see below) associated 
with them, such as the “ss” in sea (Figure 3.9 later in the chapter), have 
an acoustic pressure waveform that does not repeat regularly, and is often 
 random in its variation with time and is therefore not periodic. Such a 
waveform is referred to as being “aperiodic” (see Chapter 1). The spectrum 
of such sounds contains frequency components that are not related as inte-
ger multiples of some frequency, and there are no harmonic components. 
The spectrum will often contain all frequencies, in which case it is known 
as a “continuous” spectrum. An example of an acoustic pressure waveform 
and spectrum for a non-periodic sound is illustrated in Figure 3.6 for a 
snare drum being brushed.

3.2 HeariNg pitCH

The perception of pitch is basic to the hearing of tonal music. Familiarity 
with current theories of pitch perception as well as other aspects of psy-
choacoustics enables a well founded understanding of musically important 
matters such as tuning, intonation, perfect pitch, vibrato, electronic syn-
thesis of new sounds, and pitch paradoxes (see Chapter 5).

Pitch relates to the perceived position of a sound on a scale from low to 
high and its formal definition by the American National Standards Institute 
(1960) is couched in these terms as: “pitch is that attribute of auditory sen-
sation in terms of which sounds may be ordered on a scale extending from 
low to high.” The measurement of pitch is therefore “subjective” because it 
requires a human listener (the “subject”) to make a perceptual judgment. 
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This is in contrast to the measurement in the laboratory of, for example, the 
fundamental frequency (f0) of a note, which is an “objective” measurement.

In general, sounds which have a periodic acoustic pressure variation 
with time are perceived as having a pitch associated with them, and sounds 
whose acoustic pressure waveform is non-periodic are perceived as having 
no pitch. The relationship between the waveforms and spectra of pitched 
and non-pitched sounds is summarized in Table 3.2 and examples of each 
have been discussed in relation to Figures 3.2 and 3.6. The terms “time 
domain” and “frequency domain” are widely used when considering time 
(waveform) and frequency (spectral) representations of signals.
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Figure 3.6 Acoustic pressure waveform (upper) and spectrum (lower) for a snare drum being 
brushed.

table 3.2   The nature of the waveforms and spectra for pitched and non-
pitched sounds

pitched Non-pitched

Waveform Periodic Non-periodic

(time domain) regular repetitions no regular repetitions

Spectrum Line Continuous

(frequency domain) harmonic components no harmonic components
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The pitch of a note varies as its f0 is changed: the greater the f0 the 
higher the pitch and vice versa. Although the measurement of pitch and 
f0 are subjective and objective and measured on a scale of high/low and Hz 
respectively, a measurement of pitch can be given in Hz. This is achieved 
by asking a listener to compare the sound of interest by switching between 
it and a sine wave with a variable frequency. The listener would adjust the 
frequency of the sine wave until the pitches of the two sounds are perceived 
as being equal, at which point the pitch of the sound of interest is equal to 
the frequency of the sine wave in Hz.

Two basic theories of pitch perception have been proposed to explain 
how the human hearing system is able to locate and track changes in the 
f0 of an input sound: the “place” theory and the “temporal” theory. These 
are described below along with their limitations in terms of explaining 
observed pitch perception effects.

3.2.1 place theory of pitch perception
The place theory of pitch perception relates directly to the frequency 
 analysis carried out by the basilar membrane in which different frequency 
components of the input sound stimulate different positions, or places, on 
the membrane. Neural firing of the hair cells occurs at each of these places, 
indicating to higher centers of neural processing and the brain which fre-
quency components are present in the input sound. For sounds in which 
all the harmonics are present, the following are possibilities for finding the 
value of f0 based on a place analysis of the components of the input sound 
and allowing for the possibility of some “higher processing” of the compo-
nent frequencies at higher centers of neural processing and/or the brain.

n Method 1: Locate the f0 component itself.

n Method 2: Find the minimum frequency difference between adjacent 
harmonics. The frequency difference between the (n  1)th and the 
(n)th harmonic, which are adjacent by definition if all harmonics are 
present, is:

 

(( ) ) (  ) (  ) (  ) (  )
where    
n f n f n f f n f f

n
     



1 1
1 2 3 4

0 0 0 0 0 0

, , , ,,...  

n Method 3: Find the highest common factor (the highest number that 
will divide into all the frequencies present giving an integer result) 
of the components present. Table 3.3 illustrates this for a sound 
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consisting of the first 10 harmonics whose f0 is 100 Hz, by dividing 
each frequency by integers, in this case up to 10, and looking for the 
largest number in the results which exists for every frequency. The 
frequencies of the harmonics are given in the left-hand column  
(the result of a place analysis), and each of the other columns shows 
the result of dividing the frequency of each component by integers 
(m  2 to 10). The highest common factor is the highest value 
appearing in all rows of the table, including the frequencies of the 
components themselves (f0 ÷ 1) or (m  1), and is 100 Hz, which 
would be perceived as the pitch.

n In addition, it is of interest to notice that every value which appears 
in the row relating to the f0, in this case 100 Hz, will appear in 
each of the other rows if the table were extended far enough to 
the right. This is the case because by definition, 100 divides into 
each harmonic frequency to give an integer result (n) and all values 
appearing in the 100 Hz row are found by integer (m) division of 
100 Hz; therefore all values in the 100 Hz row can be gained by 
division of harmonic frequencies by (m  n), which must itself be an 
integer. These are f0 values (50 Hz, 33 Hz, 25 Hz, 20 Hz, etc.) whose 
harmonic series also contain all the given components, and they are 
known as “sub-harmonics.” This is why it is the highest common 
factor which is used.

table 3.3   Processing method to find the highest common factor of the frequencies of the first 10 
harmonics of a sound whose f0  100 Hz (calculations to four significant figures)

place analysis Higher processing

n  f0 
(÷1) (Hz)

÷2 (Hz) ÷3 (Hz) ÷4 (Hz) ÷5 (Hz) ÷6 (Hz) ÷7 (Hz) ÷8 (Hz) ÷9 (Hz) ÷10 (Hz)

 100100  50.0050.00  33.3333.33  25.0025.00  20.0020.00  1��.��71��.��7  14.2��14.2��  12.5012.50  11.1111.11  10.0010.00

 200200 100.0  ����.��7����.��7  50.0050.00  40.0040.00  33.3333.33  28.5728.57  25.0025.00  22.2222.22  20.0020.00

 300300 150.0 100.0  75.0075.00  ��0.00��0.00  50.0050.00  42.8��42.8��  37.3037.30  33.3333.33  30.0030.00

 400400 200.0 133.3 100.0  80.0080.00  ����.��7����.��7  57.1457.14  50.0050.00  44.4444.44  40.0040.00

 500500 250.0 1����.7 125.0 100.0  83.3383.33  71.4371.43  ��2.50��2.50  55.5��55.5��  50.0050.00

 ��00��00 300.0 200.0 150.0 120.0 100.0  85.7185.71  75.0075.00  ����.��7����.��7  ��0.00��0.00

 700700 350.0 233.3 175.0 140.0 11��.7 100.0  87.5087.50  77.7877.78  70.0070.00

 800800 400.0 2����.7 200.0 1��0.0 133.3 114.3 100.0  88.8��88.8��  80.0080.00

 ��00��00 450.0 300.0 225.0 180.0 150.0 128.�� 112.5 100.0  ��0.00��0.00

1000 500.0 333.3 250.0 200.0 1����.7 142.�� 125.0 111.1 100.0
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One of the earliest versions of the place theory suggests that the pitch 
of a sound corresponds to the place stimulated by the lowest frequency 
component in the sound which is f0 (Method 1 above). The assumption 
underlying this is that f0 is always present in sounds and the theory was 
encapsulated by Ohm in his second or “acoustical” law1: “a pitch corre-
sponding to a certain frequency can only be heard if the acoustic wave con-
tains power at that frequency.”

This theory came under close scrutiny when it became possible to carry 
out experiments in which sounds could be synthesized with known spectra. 
Schouten (1940) demonstrated that the pitch of a pulse wave remained the 
same when the fundamental component was removed, thus demonstrat-
ing: (i) that f0 did not have to be present for pitch perception, and (ii) that 
the lowest component present is not the basis for pitch perception because 
the pitch does not jump up by one octave (since the second harmonic is 
now the lowest component after f0 has been removed). This experiment has 
become known as “the phenomenon of the missing fundamental,” and sug-
gests that Method 1 cannot account for human pitch perception.

Method 2 seems to provide an attractive possibility since the place 
theory gives the positions of the harmonics, whether or not f0 is present, 
and it should provide a basis for pitch perception provided some adjacent 
harmonics are present. For most musical sounds, adjacent harmonics are 
indeed present. However, researchers are always looking for ways of testing 
psychoacoustic theories, in this case pitch perception, by creating sounds 
for which the perceived pitch cannot be explained by current theories. Such 
sounds are often generated electronically to provide accurate control over 
their frequency components and temporal development.

Figure 3.7 shows an idealized spectrum of a sound which contains just 
odd harmonics (1 f0, 3 f0, 5 f0, ...) and shows that measurement of the fre-
quency distance between adjacent harmonics would give f0, 2 f0, 2 f0, 2 f0, 
etc. The minimum spacing between the harmonics is f0, which gives a pos-
sible basis for pitch perception. However, if the f0 component were removed 
(imagine removing the dotted f0 component in Figure 3.7), the perceived 
pitch would not change. Now, however, the spacings between adjacent har-
monics is 3 f0, 2 f0, 2 f0, 2 f0, etc. and the minimum spacing is 2 f0, but the 
pitch does not jump up by an octave.

The third method will give an appropriate f0 for: (i) sounds with missing f0 
components (see Table 3.3 and ignore the f0 row), (ii) sounds with odd harmon- 
ic components only (see Table 3.3 and ignore the rows for the even harmonics), 
and (iii) sounds with odd harmonic components only with a missing f0 com-
ponent (see Table 3.3 and ignore the rows for f0 and the even harmonics).  

1His first law being basic to electrical work: voltage  current  resistance.
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In each case, the highest common factor of the components is f0. This 
method also provides a basis for understanding how a pitch is perceived for 
non-harmonic sounds, such as bells or chime bars, whose components are 
not exact harmonics (integer multipliers) of the resulting f0.

As an example of such a non-harmonic sound, Schouten in one of his 
later experiments produced sounds whose component frequencies were 
1040 Hz, 1240 Hz, and 1440 Hz and found that the perceived pitch was 
approximately 207 Hz (consider track 4C on the accompanying CD). The f0 
for these components, based on the minimum spacing between the compo-
nents (Method 2), is 200 Hz. Table 3.4 shows the result of applying Method 
3 (searching for the highest common factor of these three components) up 
to an integer divisor of 10. Schouten’s proposal can be interpreted in terms 
of this table by looking for the closest set of values in the table that would 
be consistent with the three components being true harmonics and tak-
ing their average to give an estimate of f0. In this case, taking 1040 Hz as 
the fifth “harmonic,” 1240 Hz as the sixth “harmonic” and 1440 Hz as the  
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Figure 3.7 An idealized spectrum for a sound with odd harmonics only to show the spacing 
between adjacent harmonics when the fundamental frequency component (shown dashed) is present 
or absent.

table 3.4   Illustration of how finding the highest common factor of the frequencies of the three 
components—1040 Hz, 1240 Hz and 1440 Hz—gives a basis for explaining a perceived 
pitch of approximately 207 Hz (calculations to four significant figures)

Component 
frequency 
(Hz)

÷2 (Hz) ÷3 (Hz) ÷4 (Hz) ÷5 (Hz) ÷6 (Hz) ÷7 (Hz) ÷8 (Hz) ÷9 (Hz) ÷10 (Hz)

1040 520.0 34��.7 2��0.0 208.0 173.3 148.�� 130.0 115.�� 104.0

1240 ��20.0 413.3 310.0 248.0 20��.7 177.1 155.0 137.8 124.0

1440 720.0 480.0 3��0.0 288.0 240.0 205.7 180.0 1��0.0 144.0
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seventh “harmonic” gives 208 Hz, 207 Hz and 206 Hz respectively. The 
average of these values is 207 Hz, and Schouten referred to the pitch per-
ceived in such a situation as the “residue pitch” or “pitch of the residue.” It 
is also sometimes referred to as “virtual pitch.”

By way of a coda to this discussion, it is interesting to note that these 
components 1040 Hz, 1240 Hz and 1440 Hz do, in fact, have a true f0 of 
40 Hz of which they are the 26th, 31st and 36th harmonics, which would 
appear if the table were continued well over to the right. However, the audi-
tory system appears to find an f0 for which the components present are 
adjacent harmonics.

3.2.2 problems with the place theory
The place theory provides a basis for understanding how f0 could be found 
from a frequency analysis of components. However, there are a number of 
problems with the place theory because it does not explain:

n the fine degree of accuracy observed in human pitch perception;

n pitch perception of sounds whose frequency components are not 
resolved by the place mechanism;

n the pitch perceived for some sounds which have continuous (non-
harmonic) spectra; or

n pitch perception for sounds with an f0 less than 50 Hz.

Each will be considered in turn.
Psychoacoustically, the ability to discriminate between sounds that are 

nearly the same except for a change in one aspect (f0, intensity, duration, 
etc.) is measured as a “difference limen” (DL), or “just noticeable differ-
ence” (JND). JND is preferred in this book. The JND for human pitch per-
ception is shown graphically in Figure 3.8 along with the critical bandwidth 
curve. This JND graph is based on an experiment by Zwicker et al. (1957) 
in which sinusoidal stimuli were used (fixed waveshape) and the sound 
intensity level and sound duration remained constant. It turns out that 
the JND is approximately one thirtieth of the critical bandwidth across the 
hearing range. Musically, this is equivalent to approximately one twelfth of 
a semitone. Thus the JND in pitch is much smaller than the resolution of 
the analysis filters (critical bandwidth).

The place mechanism will resolve a given harmonic of an input sound 
provided that the critical bandwidth of the filter concerned is sufficiently 
narrow to exclude adjacent harmonics. It turns out that, no matter what 
the f0 of the sound is, only the first five to seven harmonics are resolved by 
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the place analysis mechanism. This can be illustrated with an example as 
follows with reference to Table 3.5.

Consider a sound consisting of all harmonics (f0, 2 f0, 3 f0, 4 f0, 5 f0, 
etc.) whose f0 is 110 Hz.The frequencies of the first 10 harmonics are given 
in the left-hand column of the table. The next column shows the critical 
bandwidth of a filter centered on each of these harmonics by calculation 
using Equation 2.6. The critical bandwidth increases with filter center fre-
quency (see Figure 3.8), and the frequency analysis action of the basilar 
membrane is equivalent to a bank of filters. Harmonics will cease to be 
resolved by the place mechanism when the critical bandwidth exceeds the 
frequency spacing between adjacent harmonics, which is f0 when all adja-
cent harmonics are present.

In the table, it can be seen that the critical bandwidth is greater than f0 
for the filter centered at 770 Hz (the seventh harmonic), but this filter will 
resolve the seventh harmonic since it is centered over it and its bandwidth 
extends half above and half below 770 Hz. In order to establish when har-
monics are not resolved, consider the filters centered midway between adja-
cent harmonic positions (their center frequencies and critical bandwidths 
are shown in Table 3.5).

The filter centered between the seventh and eighth harmonics has a 
critical bandwidth of 113.7 Hz which exceeds f0 (110 Hz in this example) 
and therefore the seventh and eighth harmonics will not be resolved by this 
filter. Due to the continuous nature of the wave traveling along the basilar 
 membrane, no harmonics will be resolved in this example above the sixth, 
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Figure 3.8 Just noticeable difference (JND) for pitch perception and the equivalent rectangular 
bandwidth.
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since there will be areas on the membrane responding to at least adjacent 
pairs of harmonics everywhere above the place where the sixth harmonic 
stimulates it. Appendix 2 shows a method for finding the filter center fre-
quency whose critical bandwidth is equal to a given f0 by solving Equation 2.6 
mathematically.

table 3.5   Illustration of resolution of place mechanism for an input 
consisting of the first 10 harmonics and an f0 of 110 Hz 
(calculations to four significant figures). Key: CB  critical 
bandwidth, CF  center frequency

Harmonic  
frequency (Hz)

CB of local  
filter (Hz)

CF of mid  
harmonic  
filter (Hz)

CB of mid  
harmonic  
filter (Hz)

resolved?

 110  3��.573��.57  1��5.01��5.0  42.5142.51 Yes

 220220  48.4548.45  275.0275.0  54.3854.38 Yes

 330330  ��0.32��0.32  385.0385.0  ����.2������.2�� Yes

 440440  72.1��72.1��  4��5.04��5.0  78.1378.13 Yes

 550550  84.0784.07  ��05.0��05.0  ��0.00��0.00 Yes

 ����0����0  ��5.��4��5.��4  715.0715.0 101.8 Yes

 770770 107.8  825.0825.0 113.7 No

 880880 11��.��  ��35.0��35.0 125.�� No

 ����0����0 131.5 1045 137.5 No

1100 143.4 1155 14��.3 No

exaMple 3.4

Confirm the result illustrated in table 3.5 that the sixth harmonic will be resolved 
but the seventh harmonic will not be resolved for an f0 of 110 Hz.
Using Equation A1.2 in Appendix 1:

fc(kHz)
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Find the center frequency (fc) for which the critical bandwidth (ERB) equals 110.0 Hz  
by substituting 110 Hz for ERB. (Bear in mind that the center frequency is in kHz in this 
equation.)
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Observation of the relationship between the critical bandwidth and 
center frequency plotted in Figure 3.8 allows the general conclusion that 
no harmonic above about the fifth to seventh is resolved for any f0 to be 
approximately validated as follows. The center frequency for which the crit-
ical band exceeds the f0 of the sound of interest is found from the graph 
and no harmonic above this center frequency will be resolved. To find the 
center frequency, plot a horizontal line for the f0 of interest on the y axis, 
and find the frequency on the x axis where the line intersects the criti-
cal band curve. Only harmonics below this frequency will be resolved and 
those above will not. It is worth trying this exercise for a few f0 values to 
reinforce the general conclusion about resolution of harmonics, since this 
is vital to the understanding of other aspects of psychoacoustics as well as 
pitch perception.

There are sounds which have non-harmonic spectra for which a pitch is 
perceived; these are exceptions to the second part of the general statement 
given earlier that “sounds whose acoustic pressure waveform is non-periodic 
are perceived as having no pitch.” For example, listen to examples of the 
“ss” in sea and the “sh” in shell (produce these yourself or ask someone else 
to) in terms of which one has the higher pitch. Most listeners will readily 
respond that “ss” has a higher pitch than “sh.” The spectrum of both sounds 
is continuous and an example for each is shown in Figure 3.9. Notice that 
the energy is biased more towards lower frequencies for the “sh” with a peak 
around 2.5 kHz, compared with the “ss” where the energy has a peak at 
about 5 kHz.

This “center of gravity” of the spectral energy of a sound is thought to 
convey a sense of higher or lower pitch for such sounds which are noise 
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The center frequency of the filter whose critical bandwidth is 110.0 Hz is 7��0 Hz. All filters 
above 7��0 Hz will have bandwidths that are greater than its bandwidth of 110 Hz, because 
we know that the critical bandwidth increases with center frequency (see Figure 3.8). As 
it lies below the center frequency of the filter midway between the seventh (770 Hz) and 
eighth (880 Hz) harmonics, those harmonics will not be resolved, since the filter that does 
lie between them will have a bandwidth that is greater than 110 Hz.Therefore harmon-
ics up to the sixth will be resolved and harmonics from the seventh upwards will not be 
resolved.
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based, but the pitch sensation is far weaker than for that perceived for 
periodic sounds. This pitch phenomenon is, however, important in music 
when considering the perception of the non-periodic sounds produced, for 
example, by some groups of instruments in the percussion section (con-
sider track 5 on the accompanying CD), but the majority of instruments on 
which notes are played in musical performances produce periodic acoustic 
pressure variations.

The final identified problem is that the pitch perceived for sounds with 
components only below 50 Hz cannot be explained by the place theory, 
because the pattern of vibration on the basilar membrane does not appear 
to change in that region. Sounds of this type are rather unusual, but not 
impossible to create by electronic synthesis. Since the typical lowest audible 
frequency for humans is 20 Hz, a sound with an f0 of 20 Hz would have har-
monics at 40 Hz, 60 Hz, etc., and only the first two fall within this region 
where no change is observed in basilar membrane response. Harmonics 
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Figure 3.9 Waveforms and spectra for “ss” as in sea and “sh” as in shoe.
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falling above 50 Hz will be analyzed by the place mechanism in the usual 
manner. Sinusoids in the 20–50 Hz range are perceived as having different 
pitches and the place mechanism cannot explain this.

These are some of the key problems which the place mechanism cannot 
explain, and attention will now be drawn to the temporal theory of pitch 
perception which was developed to explain some of these problems with 
the place theory.

3.2.3 temporal theory of pitch perception
The temporal theory of pitch perception is based on the fact that the waveform 
of a sound with a strong musical pitch repeats or is periodic (see Table 3.2). An 
example is shown in Figure 3.1 for A4 played on four instruments. The f0 for 
a periodic sound can be found from a measurement of the period of a cycle of 
the waveform using Equation 3.1.

The temporal theory of pitch perception relies on the timing of neu-
ral firings generated in the organ of Corti (see Figure 2.3) which occur in 
response to vibrations of the basilar membrane. The place theory is based 
on the fact that the basilar membrane is stimulated at different places along 
its length according to the frequency components in the input sound. The 
key to the temporal theory is the detailed nature of the actual waveform 
exciting the different places along the length of the basilar membrane. This 
can be modeled using a bank of electronic band-pass filters whose center 
frequencies and bandwidths vary according to the critical bandwidth of the 
human hearing system as illustrated, for example, in Figure 3.8.

Figure 3.10 shows the output waveforms from such a bank of electronic 
filters, implemented using transputers by Howard et al. (1995), with criti-
cal bandwidths based on the ERB equation (Equation 2.6) for C4 played 
on a violin. The nominal f0 for C4 is 261.6 Hz (see Figure 3.21 later in the 
chapter). The output waveform from the filter with a center frequency just 
above 200 Hz, the lowest center frequency represented in the figure, is a 
sine wave at f0. This is because the f0 component is resolved by the analyz-
ing filter, and an individual harmonic of a complex periodic waveform is a 
sine wave (see Chapter 1).

The place theory suggests (see calculation associated with Table 3.5) 
that the first six harmonics will be resolved by the basilar membrane. It can 
be seen in the example note shown in Figure 3.10 that the second (around 
520 Hz), third (around 780 Hz), fourth (around 1040 Hz) and fifth (around 
1300 Hz) harmonics are resolved and their waveforms are sinusoidal. Some 
amplitude variation is apparent on these sine waves, particularly on the fourth 
and fifth, indicating the dynamic nature of the acoustic pressure output from 
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a musical instrument. The sixth harmonic (around 1560 Hz) has greater 
amplitude variation, but the individual cycles are clear.

Output waveforms for filter center frequencies above the sixth har-
monic in this example are not sinusoidal because these harmonics are 
not resolved individually. At least two harmonics are combined in the 
outputs from filters which are not sinusoidal in Figure 3.10. When two 
components close in frequency are combined, they produce a “beat” 
waveform whose amplitude rises and falls regularly if the components 
are harmonics of some fundamental. The period of the beat is equal to 
the difference between the frequencies of the two components. Therefore 
if the components are adjacent harmonics, then the beat frequency is 
equal to their f0 and the period of the beat waveform is (1/f0). This can 
be observed in the figure by comparing the beat period for filter outputs 
above 1.5 kHz with the period of the output sinewave at f0. Thus the 
period of output waveforms for filters with center frequencies higher than 
the sixth harmonic will be at (1/f0) for an input consisting of adjacent 
harmonics.
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Figure 3.10 Output from a transputer-based model of human hearing to illustrate the nature of 
basilar membrane vibration at different places along its length for C4 played on a violin.
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The periods of all the output waveforms which stimulate the neural fir-
ing in the organ of Corti form the basis of the temporal theory of pitch 
perception. There are nerve fibers available to fire at all places along the 
basilar membrane, and they do so in such a manner that a given nerve 
fiber may only fire at one phase or instant in each cycle of the stimulating 
waveform, a process known as “phase locking.” Although the nerve firing 
is phase locked to one instant in each cycle of the stimulating waveform, it 
has been observed that no single nerve fiber is able to fire continuously at 
frequencies above approximately 300 Hz. It turns out that the nerve does 
not necessarily fire in every cycle and that the cycle in which it fires tends 
to be random, which according to Pickles (1982) may be “perhaps as little 
as once every hundred cycles on average.”

However, due to phase locking, the time between firings for any particu-
lar nerve will always be an integer (1, 2, 3, 4, ...) multiple of periods of the 
stimulating waveform and there are a number of nerves involved at each 
place. A “volley firing” principle has also been suggested by Wever (1949) 
in which groups of nerves work together, each firing in different cycles to 
enable frequencies higher than 300 Hz to be coded. A full discussion of this 
area is beyond the scope of this book, and the interested reader is encour-
aged to consult, for example, Pickles (1982), Moore (1982, 1986) and 
Roederer (1975). What follows relies on the principle of phase locking.

The minimum time between firings (1 period of the stimulating wave-
form) at different places along the basilar membrane can be inferred from 
Figure 3.10 for the violin playing C4, since it will be equivalent to the period 
of the output waveform from the analysis filter. For places which respond to 
frequencies below about the sixth harmonic, the minimum time between fir-
ings is at the period of the harmonic itself, and, for places above, the mini-
mum time between firings is the period of the input waveform itself (i.e., 1/f0).

The possible instants of nerve firing are illustrated in Figure 3.11. This 
figure enables the benefit to be illustrated that results from the fact that 
nerves fire phase locked to the stimulating waveform but not necessarily 
during every cycle. The figure shows an idealized unrolled basilar mem-
brane with the places corresponding to where maximum stimulation  
would occur for input components at multiples of f0 up to the sixteenth 
harmonic, for any f0 of input sound. The assumption on which the figure 
is based is that harmonics up to and including the seventh are analyzed 
separately. The main part of the figure shows the possible instants where 
nerves could fire based on phase locking and the fact that nerves may not 
fire every cycle; the lengths of the vertical lines illustrate the proportion of 
firings which might occur at that position, on the basis that more firings 
are likely with reduced times between them. These approximate to the idea 
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of a histogram of firings being built up, sometimes referred to as an “inter-
spike interval” histogram, where a “spike” is a single nerve firing.

Thus at the place on the basilar membrane stimulated by the f0 com-
ponent, possible times between nerve firing are: (1/f0), (2/f0) and (3/f0) in 
this figure as shown, with fewer firings at the higher intervals. For the place 
stimulated by the second harmonic, possible firing times are: [1/(2 f0)], [2/(2 
f0)] or (1/f0), [3/(2 f0)], [4/(2 f0)] or (2/f0), and so on. This is the case for each 
place stimulated by a harmonic of f0 up to the seventh. For places corre-
sponding to higher frequencies than (7 f0), the stimulating waveform is beat- 
like and its fundamental period is (1/f0), and therefore the possible firing 
times are: (1/f0), (2/f0) and (3/f0) in this figure as shown.
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Figure 3.11 The possible instants for nerve firing across the places on the basilar membrane for 
the first 16 harmonics of an input sound.
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Visually it can be seen in Figure 3.11 that if the entries in all these 
inter-spike interval histograms were added together vertically (i.e., for each 
firing time interval), then the maximum entry would occur for the period 
of f0. This is reinforced when it is remembered that all places higher than 
those shown in the figure would exhibit outputs similar to those shown 
above the eighth harmonic. Notice how all the places where harmonics are 
resolved have an entry in their histograms at the fundamental period as 
a direct result of the fact that nerves may not fire in every cycle. This is 
the basis on which the temporal theory of pitch perception is thought to 
function.

3.2.4 problems with the temporal theory
The temporal theory gives a basis for understanding how the fundamental 
period could be found from an analysis of the nerve firing times from all 
places across the basilar membrane. However, not all observed pitch per-
ception abilities can be explained by the temporal theory alone, the most 
important being the pitch perceived for sounds whose f0 is greater than 
5 kHz. This cannot be explained by the temporal theory because phase lock-
ing breaks down above 5 kHz. Any ability to perceive the pitches of sounds 
with f0 greater than 5 kHz is therefore thought to be due to the place theory 
alone.

Given that the upper frequency limit of human hearing is at best 20 kHz 
for youngsters, with a more practical upper limit being 16 kHz for those 
over 20 years of age, a sound with an f0 greater than 5 kHz is only going to 
provide the hearing system with two harmonics (f0 and 2 f0) for analysis. 
In practice it has been established that human pitch perception for sounds 
whose f0 is greater than 5 kHz is rather poor, with many musicians find-
ing it difficult to judge accurately musical intervals in this frequency range. 
Moore (1982) notes that this ties in well with f0 for the upper note of the 
piccolo being approximately 4.5 kHz. On large organs, some stops can have 
pipes whose f0 exceeds 8 kHz, but these are provided to be used in conjunc-
tion with other stops (see Section 5.4).

3.2.5 Contemporary theory of pitch perception
Psychoacoustic research has tended historically to consider human pitch 
perception with reference to the place or the temporal theory, and it is clear 
that neither theory alone can account for all observed pitch perception abil-
ities. In reality, place analysis occurs giving rise to nerve firings from each 
place on the basilar membrane that is stimulated. Thus nerve centers and 
the parts of the brain concerned with auditory processing are provided not 
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only with an indication of the place where basilar membrane stimulation 
occurs (frequency analysis) but also with information about the nature of 
that stimulation (temporal analysis). Therefore neither theory is likely to 
explain human pitch perception completely, since the output from either 
the place or temporal analysis makes use of the other in communicating 
itself on the auditory nerve.

Figure 3.12 shows a model for pitch perception of complex tones based 
on that of Moore (1982) which encapsulates the benefits described for both 
theories. The acoustic pressure wave is modified by the frequency response 
of the outer and middle ears (see Chapter 2), and analyzed by the place 
mechanism which is equivalent to a filter bank analysis. Neural firings 
occur stimulated by the detailed vibration of the membrane at places equiv-
alent to frequency components of the input sound based on phase locking 
but not always once per cycle—the latter is illustrated on the right-hand 
side of the figure. The fact that firing is occurring from particular places 
provides the basis for the place theory of pitch perception. The intervals 
between neural firings (spikes) are analyzed and the results are combined 
to allow common intervals to be found which will tend to be at the fun-
damental period and its multiples, but predominantly at (1/f0). This is the 
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Figure 3.12 A model for human pitch perception based on Moore (1982).
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basis of the temporal theory of pitch perception. The pitch of the sound is 
based on the results.

3.2.6 Secondary aspects of pitch perception
The perceived pitch of a sound is primarily affected by changes in f0, which 
is why the pitch of a note is usually directly related to its f0, for example 
by stating that A4 has an f0 of 440 Hz as a standard pitch reference. The 
estimation of f0 forms the basis of both the place and temporal theories of 
pitch perception. A change in pitch of a particular musical interval mani-
fests itself if the f0 values of the notes concerned are in the appropriate fre-
quency ratio to give the primary acoustic (objective) basis for the perceived 
(subjective) pitch of the notes and hence the musical interval. Changes 
in pitch are also, however, perceived by modifying the intensity or dura-
tion of a sound while keeping f0 constant. These are by far secondary pitch 
change effects compared with the result of varying f0, and they are often 
very subtle.

These secondary pitch effects are summarized as follows. If the intensity 
of a sine wave is varied between 40 dBSPL and 90 dBSPL while keeping its 
f0 constant, a change in pitch is perceived for all f0 values other than those 
around 1–2 kHz. For f0 values greater than 2 kHz the pitch becomes sharper 
as the intensity is raised, and for f0 values below 1 kHz the pitch becomes 
flatter as the intensity is raised. This effect is illustrated in Figure 3.13, 
and the JND for pitch is shown with reference to the pitch at 60 dBSPL to 
enable the frequencies and intensities of sine waves for which the effect 
might be perceived to be inferred. This effect is for sine waves which are 
rarely encountered in music, although electronic synthesizers have made 
them widely available.
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Figure 3.13 The pitch shifts perceived when the intensity of a sine wave with a constant 
fundamental frequency is varied (after Rossing, 2001).
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With complex tones the effect is less well defined; Rossing (2001) 
 suggests around 17 cents (0.17 of a semitone) for an intensity change 
between 65 dBSPL and 95 dBSPL. Rossing gives two suggestions as to where 
this effect could have musical consequences: (i) he cites Parkin (1974) to 
note that this pitch shift phenomenon is apparent when listening in a 
highly reverberant building to the release of a final loud organ chord which 
appears to sharpen as the sound level diminishes, and (ii) he suggests that 
the pitch shift observed for sounds with varying rates of waveform ampli-
tude change, while f0 is kept constant, should be “taken into account when 
dealing with percussion instruments.”

The effect that the duration of a sound has on the perception of the 
pitch of a note is not a simple one, but it is summarized graphically in 
Figure 3.14 in terms of the minimum number of cycles required at a given 
f0 for a definite distinct pitch to be perceived. Shorter sounds may be per-
ceived as being pitched rather than non-pitched, but the accuracy with 
which listeners can make such a judgment worsens as the duration of the 
sound drops below that shown in the figure.

By way of a coda to this section on the perception of pitch, a phenome-
non known as “repetition pitch” is briefly introduced, particularly now that 
electronic synthesis and studio techniques make it relatively straightfor-
ward to reproduce (consider track 6 on the accompanying CD). Repetition 
pitch is perceived (by most but not all listeners) if a non-periodic noise-
based signal, for example the sound of a waterfall, the consonants in see, 
shoe, fee, or a noise generator, is added to a delayed version of itself and 
played to listeners. When the delay is altered a change in pitch is perceived. 
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Figure 3.14 The effect of duration on pitch in terms of the number of cycles needed for a 
definite distinct pitch to be perceived for a given fundamental frequency (data from Rossing, 2001).
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The pitch is equivalent to a sound whose f0 is equal to (1/delay), and the  
effect works for delays between approximately 1 ms and 10 ms depending on  
the listener, giving an equivalent f0 range for the effect of 100 to 1000 Hz. 
With modern electronic equipment it is quite possible to play tunes using 
this effect!

3.3 HeariNg NOteS

The music of different cultures can vary considerably in many aspects 
including, for example, pitch, rhythm, instrumentation, available dynamic 
range, and the basic melodic and harmonic usage in the music. Musical 
taste is always evolving with time; what one composer is experimenting 
with may well become part of the established tradition a number of years 
later. The perception of chords and the development of different tuning 
systems are discussed in this section from a psychoacoustic perspective to 
complement the acoustic discussion earlier in this chapter in consideration 
of the development of melody and harmony in Western music.

3.3.1 Harmonics and the development of Western harmony
Hearing harmony is basic to music appreciation, and in its basic form har-
mony is sustained by means of chords. A chord consists of at least two 
notes sounding together and it can be described in terms of the musical 
intervals between the individual notes which make it up.

A basis for understanding the psychoacoustics of a chord is given by 
considering the perception of any two notes sounding together. The full set 
of commonly considered two-note intervals and their names are shown in 
Figure 3.15 relative to middle C. Each of the augmented and diminished 
intervals sounds the same as another interval shown if played on a mod-
ern keyboard, for example the augmented unison and minor second, the 
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Figure 3.15 All two-note musical intervals occurring up to an octave related to C4.



1513.3 Hearing Notes
augmented fourth and diminished fifth, the augmented fifth and minor 
sixth, and the major seventh and diminished octave, but they are notated 
differently on the stave and, depending on the tuning system in use, these 
“enharmonics” would sound different also.

The development of harmony in Western music can be viewed in terms 
of the decreasing musical interval size between adjacent members of the 
natural harmonic series as the harmonic number is increased. Figure 3.3 
shows the musical intervals between the first 10 harmonics of the natural 
harmonic series. The musical interval between adjacent harmonics must 
reduce as the harmonic number is increased since it is determined in terms 
of the f0 of the notes concerned by the ratio of the harmonic numbers 
themselves (e.g. 2:1  3:2  4:3  5:4  6:5, etc.).

The earliest polyphonic Western music, known as “organum,” made use 
of the octave, the perfect fifth, and its inversion, the perfect fourth. These 
are the intervals between the 1st and 2nd, the 2nd and 3rd, and the 3rd and 
4th members of the natural harmonic series respectively (see Figure 3.3).  
Later, the major and minor third began to be accepted, the intervals between 
the 4th and 5th, and the 5th and 6th natural harmonics, with their inver-
sions, the minor and major sixth respectively which are the intervals between 
the 5th and 8th, and the 3rd and 5th harmonics respectively. The major 
triad, consisting of a major third and a minor third, and the minor triad, a 
minor third and a major third, became the building block of Western tonal 
harmony. The interval of the minor seventh started to be incorporated, and 
its inversion the major second, the intervals between the 4th and 7th, and 
the 7th and 8th harmonics respectively. Twentieth century composers have 
explored music composed using major and minor whole tones (the intervals 
between the 8th and 9th, and between the 9th and 10th harmonics respec-
tively), semitones (adjacent harmonics above the 11th are spaced by intervals 
close to semitones) and microtones or intervals of less than a semitone (adja-
cent harmonics above the 16th are spaced by microtones.)

3.3.2 Consonance and dissonance
The development of Western harmony follows a pattern where the inter-
vals central to musical development have been gradually ascending the nat-
ural harmonic series. These changes have occurred partly as a function of 
increasing acceptance of intervals which are deemed to be musically “con-
sonant,” or pleasing to listen to, as opposed to “dissonant,” or unpleasant 
to the listener. The psychoacoustic basis behind consonance and disso-
nance relates to critical bandwidth, which provides a means for determin-
ing the degree of consonance (or dissonance) of musical intervals.
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Figure 2.6 illustrates the perceived effect of two sine waves heard 
together when the difference between their frequencies was increased from 0 
to above one critical bandwidth. Listeners perceive a change from “rough” to 
“smooth” when the frequency difference crosses the critical bandwidth. In 
addition, a change occurs between “rough fused” to “rough separate” as the 
frequency difference is increased within the critical bandwidth. Figure 3.16  
shows the result of an experiment by Plomp and Levelt (1965) to deter-
mine to what extent two sine waves played together sound consonant or 
dissonant as their frequency difference is altered. Listeners with no musical 
training were asked to indicate the consonance, or pleasantness, of two sine 
waves played together. (Musicians were not used in the experiment since 
they would have preconceived ideas about musical intervals which are con-
sonant.) The result is the continuous pattern of response shown in the fig-
ure, with no particular musical interval being prominent in its degree of 
perceived consonance. Intervals greater than a minor third were judged to 
be consonant for all frequency ratios. The following can be concluded:

n When the frequencies are equal (unison) the tones are judged to be 
“perfectly consonant.”

n When their frequency difference is greater than one critical 
bandwidth, they are judged consonant.

n For frequency differences of between 5 and 50% of the critical 
bandwidth the interval is dissonant.

n Maximum dissonance occurs when the frequency difference is a 
quarter of a critical bandwidth.
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Figure 3.16 The perceived consonance and dissonance of two pure tones (after Plomp and 
Levelt, 1965, reproduced with permission).
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Few musical instruments ever produce a sinusoidal acoustic wave-
form, and the results relating consonance and dissonance to pure tones 
can be extended to the perception of musical intervals heard when instru-
ments which produce complex periodic tones play together. For each note 
of the chord, each harmonic that would be resolved by the hearing system 
if the note were played alone, that is all harmonics up to about the sev-
enth, contributes to the overall perception of consonance or dissonance 
depending on its frequency proximity to a harmonic of another note in 
the chord. This contribution can be assessed based on the conclusions 
from Figure 3.16. The overall consonance (dissonance) of a chord is based 
on the total consonance (dissonance) contribution from each of these 
harmonics.

3.3.3 Hearing musical intervals
Musical intervals can be ordered by decreasing consonance on this psycho-
acoustic basis. To determine the degree of consonance of a musical interval 
consisting of two complex tones, each with all harmonics present, the fre-
quencies up to the frequency of the seventh harmonic of the lower notes 
are found. Then the critical bandwidth at each frequency midway between 
harmonics of each note that are closest in frequency is found to establish 
whether or not they are within 5 to 50% of a critical bandwidth and there-
fore adding a dissonance contribution to the overall perception when the 
two notes are played together. If the harmonic of the upper note is midway 
between harmonics of the lower note, the test is carried out with the higher 
frequency pair since the critical bandwidth will be larger and the positions 
of table entries indicate this. (This exercise is similar to that carried out 
using the entries in Table 3.5.)

For example, Table 3.6 shows this calculation for two notes whose f0 
values are a perfect fifth apart (f0 frequency ratio is 3:2), the lower note hav-
ing an f0 of 220 Hz. The frequency difference between each harmonic of 
each note and its closest neighbor harmonic in the other note is calculated 
(the higher of the two is used in the case of a tied distance) to give the 
entries in column 3, the frequency midway between these harmonic pairs 
is found (column 4), and the critical bandwidth for these mid-frequencies is 
calculated (column 5). The contribution to dissonance of each of the har-
monic pairs is given in the right-hand column as follows:

 (i) If they are in unison (equal frequencies) they are “perfectly 
consonant,” shown as “C” (note that their frequency difference is 
less than 5% of the critical bandwidth).
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 (ii) If their frequency difference is greater than the critical bandwidth of 
the frequency midway between them (i.e., the entry in column 3 is 
greater than that in column 5) they are “consonant,” shown as “c.”

 (iii) If their frequency difference is less than half the critical bandwidth of 
the frequency midway between them (i.e., the entry in column 3 is 
less than that in column 6) they are “highly dissonant,” shown as “D.”

 (iv) If their frequency difference is less than the critical bandwidth of the 
frequency midway between them but greater than half that critical 
bandwidth (i.e., the entry in column 3 is less than that in column 5 
and greater than that in column 6) they are “dissonant,” shown as “d.”

The contribution to dissonance depends on where the musical interval 
occurs between adjacent harmonics in the natural harmonic series. The 
higher up the series it occurs, the greater the dissonant contribution made 
by harmonics of the two notes concerned. The case of a two-note unison 
is trivial in that all harmonics are in unison with each other and all con-
tribute as “C.” For the octave, all harmonics of the upper note are in uni-
son with harmonics of the lower note contributions as “C.” Tables 3.6–3.10 
show the contribution to dissonance and consonance for the intervals per-
fect fifth (3:2), perfect fourth (4:3), major third (5:4), minor third (6:5) and 
major whole tone (9:8) respectively. The dissonance of the chord in each 
case is related to the entries in the final column which indicate increased 

table 3.6   The degree of consonance and dissonance of a two-note chord in which all harmonics are 
present for both notes a perfect fifth apart, the f0 for the lower note being 220 Hz

perfect fifth (3:2); f0 of lower note  220 Hz

First seven 
harmonics of 
lower note (Hz)

Harmonics 
of upper 
note (Hz)

Frequency 
difference 
(Hz)

Mid-frequency 
(Hz)

Mid-frequency 
critical band-
width (Hz)

Mid-frequency 
half-critical 
bandwidth  
(Hz)

Consonant 
consonant 
dissonant 
Dissonant  
(C, c, d, D)

 220220

 440440  330330 110 385  ����.3 33 c

 ����0����0  ����0����0   0 Unison – – C

 880880  ����0����0 110 1045 138 ���� d

1100

1320 1320   0 Unison – – C

1540 1��50 110 15��5 1��7 ���� d
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dissonance in the order C, c, d and D; it can be seen that the dissonance 
increases as the harmonic number increases and the musical interval 
decreases.

The harmonics which are in unison with each other can be predicted 
from the harmonic number. For example, in the case of the perfect fourth 

table 3.7  The degree of consonance and dissonance of a two-note chord in which all harmonics are 
present for both notes a perfect fourth apart, the f0 for the lower note being 220 Hz

perfect fourth (4:3); f0 of lower note  220 Hz

First seven 
harmonics of 
lower note (Hz)

Harmonics 
of upper 
note (Hz)

Frequency 
difference 
(Hz)

Mid-frequency 
(Hz)

Mid-frequency 
critical band-
width (Hz)

Mid-frequency 
half-critical 
bandwidth (Hz)

Consonant 
consonant 
dissonant 
Dissonant  
(C, c, d, D)

 220220  2��32��3 73.0  330330  ��0��0 30 c

 440440

 ����0����0  58��58�� 73.3  ��23��23  ��2��2 4�� d

 880880  87��87�� Unison – – – C

1100 1172 73.3 1170 151 7�� D

1320

1540 14��5 73.3 1500 187 ��3 D

table 3.8  The degree of consonance and dissonance of a two-note chord in which all harmonics are 
present for both notes a major third apart, the f0 for the lower note being 220 Hz

Major third (5:4); f0 of lower note  220 Hz

First seven 
harmonics of 
lower note (Hz)

Harmonics 
of upper 
note (Hz)

Frequency 
difference 
(Hz)

Mid-frequency 
(Hz)

Mid-frequency 
critical band-
width (Hz)

Mid-frequency 
half-critical 
bandwidth (Hz)

Consonant 
consonant 
dissonant 
Dissonant  
(C, c, d, D)

 220220  275275  55.055.0  248248  5252 2�� c

 440440

 ����0����0  550550 110  ��05��05  ��0��0 45 c

 880880  825825  55.055.0  853853 117 58 D

1100 1100 Unison – – – C

1320 1375 55.0 1350 170 85 D

1540 1��50 110 1��00 1��7 ���� d
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the fourth harmonic of the lower note is in unison with the third of the 
upper note because their f0 values are in the ratio (4:3). For the major 
whole tone (9:8), the unison will occur between harmonics (the eighth of 
the upper note and the ninth of the lower) which are not resolved by the 
auditory system for each individual note.

table 3.10  The degree of consonance and dissonance of a two-note chord in which all harmonics are 
present for both notes a major whole tone apart, the f0 for the lower note being 220 Hz

Major whole tone (9:8); f0 of lower note  220 Hz

First seven 
harmonics of 
lower note (Hz)

Harmonics 
of upper 
note (Hz)

Frequency 
difference 
(Hz)

Mid-frequency 
(Hz)

Mid-frequency 
critical band-
width (Hz)

Mid-frequency 
half-critical 
bandwidth (Hz)

Consonant 
consonant 
dissonant 
Dissonant  
(C, c, d, D)

 220220  247.5247.5  27.527.5  234234  5050 25 d

 440440  4��5.04��5.0  55.055.0  477477  7��7�� 38 d

 ����0����0  742.5742.5  82.582.5  701701 100 50 d

 880880

1100  ����0.0����0.0 110 1050 138 ���� d

1320 1237.5  82.582.5 1280 1��3 82 d

1540 1485.0  55.055.0 1510 188 ��4 D

table 3.9  The degree of consonance and dissonance of a two-note chord in which all harmonics are 
present for both notes a minor third apart, the f0 for the lower note being 220 Hz

Minor third (6:5); f0 of lower note  220 Hz

First seven 
harmonics of 
lower note (Hz)

Harmonics 
of upper 
note (Hz)

Frequency 
difference 
(Hz)

Mid-frequency 
(Hz)

Mid-frequency 
critical band-
width (Hz)

Mid-frequency 
half-critical 
bandwidth (Hz)

Consonant 
consonant 
dissonant 
Dissonant  
(C, c, d, D)

 220220  2��4.02��4.0 44.0  242242  5151 2�� d

 440440  528.0528.0 88.0  484484  7777 3�� d

 ����0����0

 880880  7��2.07��2.0 82.0  833833 115 58 d

1100 105��.0 44.0 1080 141 71 D

1320 1320.0 Unison – – – C

1540 1584.0 44.0 15��0 1��3 ��7 D



1573.3 Hearing Notes
As a final point, the degree of dissonance of a given musical interval will 
vary depending on the f0 value of the lower note, due to the nature of the 
critical bandwidth with center frequency (e.g., see Figure 3.8). Tables 3.11 
and 3.12 illustrate this effect for the major third where the f0 of the lower 
note is one octave and two octaves below that used in Table 3.8 at 110 Hz 

table 3.11  The degree of consonance and dissonance of a two-note chord in which all harmonics are 
present for both notes a major third apart, the f0 for the lower note being 110 Hz

Major third (5:4); f0 of lower note  110 Hz

First seven 
harmonics of 
lower note (Hz)

Harmonics 
of upper 
note (Hz)

Frequency 
difference 
(Hz)

Mid-frequency 
(Hz)

Mid-frequency 
critical band-
width (Hz)

Mid-frequency 
half-critical 
bandwidth (Hz)

Consonant 
consonant 
dissonant 
Dissonant  
(C, c, d, D)

110 137.5 27.5 124  3838 1�� d

220

330 275.0 55.0 303  5757 2�� d

440 412.5 27.5 42��  7171 3�� D

550 550.0 Unison – – – C

����0 ��87.5 27.5 ��74  ��7��7 4�� D

770 825.0 55.0 7��8 111 5�� D

table 3.12  The degree of consonance and dissonance of a two-note chord in which all harmonics are 
present for both notes a major third apart, the f0 for the lower note being 55.0 Hz

Major third (5:4); f0 of lower note  55 Hz

First seven 
harmonics of 
lower note (Hz)

Harmonics 
of upper 
note (Hz)

Frequency 
difference 
(Hz)

Mid-frequency 
(Hz)

Mid-frequency 
critical band-
width (Hz)

Mid-frequency 
half-critical 
bandwidth (Hz)

Consonant 
consonant 
dissonant 
Dissonant  
(C, c, d, D)

 55.055.0  ��8.75��8.75 13.8  ��1.����1.�� 31 1�� D

110

1��5 137.5 27.5 151 41 21 d

220 20��.3 13.8 213 48 24 D

275 275.0 Unison – – – C

330 343.8 13.8 337 ��1 31 D

385 412.5 27.5 3���� ��8 34 D
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and 55 Hz respectively. The number of “D” entries increases in each case as 
the f0 values of the two notes are lowered.

This increase in dissonance of any given interval, excluding the unison 
and octave which are equally consonant at any pitch on this basis, mani-
fests itself in terms of preferred chord spacings in classical harmony. As a 
rule when writing four-part harmony such as SATB (soprano, alto, tenor, 
bass) hymns, the bass and tenor parts are usually no closer together than a 
fourth except when they are above the bass staff, because the result would 
otherwise sound “muddy” or “harsh.”

Figure 3.17 shows a chord of C major in a variety of four-part spacings 
and inversions which illustrate this effect when the chords are played, pref-
erably on an instrument producing a continuous steady sound for each note 
such as a pipe organ, instrumental group or suitable synthesizer sound. To 
realize the importance of this point, it is essential to listen to the effect. 
The psychoacoustics of music is, after all, about how music is perceived, 
not what it looks like on paper!

3.4 tuNiNg SySteMS

Musical scales are basic to most Western music. Modern keyboard instru-
ments have 12 notes per octave with a musical interval of one semitone 
between adjacent notes. All common Western scales incorporate octaves 
whose frequency ratios are (2:1). Therefore it is only necessary to consider 
notes in a scale over a range of one octave, since the frequencies of notes in 
other octaves can be found from them. Early scales were based on one or 
more of the musical intervals found between members of the natural har-
monic series (e.g. see Figure 3.3).

3.4.1 pythagorean tuning
The Pythagorean scale is built up from the perfect fifth. Starting, for 
 example, from the note C and going up in 12 steps of a perfect fifth produces 

Figure 3.17 Different spacings of the chord of C major. Play each chord and listen to the degree 
of “muddiness” or “harshness” each produces (see text).
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the “circle of fifths:” C, G, D, A, E, B, F#, C#, G#, D#, A#, E#, c.  
The final note after 12 steps around the circle of fifths, shown as c, has a 
frequency ratio to the starting note, C, of the frequency ratio of the perfect 
fifth (3:2) multiplied by itself 12 times, or:

 

c
C

 
3
2

129 746
12





 .

 

An interval of 12 fifths is equivalent to seven octaves, and the frequency 
ratio for the note (c’) which is seven octaves above C is:

 

′c
C

 2 128 07 .
 

Thus 12 perfect fifths (C to c) is slightly sharp compared with seven octaves 
(C to c’) of the so-called “Pythagorean comma” which has a frequency ratio:

 

c
c′

 
129 746
128 0

1 01364
.
.

.
 

If the circle of fifths were established by descending by perfect fifths instead 
of ascending, the resulting note 12 fifths below the starting notes would be 
flatter than seven octaves by 1.0136433, and every note of the descending 
circle would be slightly different from the members of the ascending circle. 
Figure 3.18 shows this effect and the manner in which the notes can be 
notated. For example, notes such as D# and Eb, A# and Bb, Bbb and A 
are not the same and are known as “enharmonics,” giving rise to the pairs 
of intervals such as major third and diminished fourth, and major seventh 
and diminished octave shown in Figure 3.15. The Pythagorean scale can be 
built up on the starting note C by making F and G an exact perfect fourth 
and perfect fifth respectively (maintaining a perfect relationship for the sub-
dominant and dominant respectively): 

 

F
C
G
C





4
3
3
2  

The frequency ratios for the other notes of the scale are found by ascending 
in perfect fifths from G and, when necessary, bringing the result down to be 
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within an octave of the starting note. The resulting frequency ratios relative 
to the starting note C are:
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G
C

A
C

D
C

E
C

A
C
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2

1
2
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2
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B
C

E
C  

The frequency ratios of the members of the Pythagorean major scale are 
shown in Figure 3.19 relative to C for convenience. The frequency ratios 
between adjacent notes can be calculated by dividing the frequency ratios of 
the upper note of the pair to C by that of the lower. For example:

 

Frequency ratio between A and B     
243
128

27
16

243
128

16
27

9
8

FFrequency ratio between E and F     
4
3
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Figure 3.18 The Pythagorean scale is based on the circle of fifths formed either by ascending 
by 12 perfect fifths (outer) or descending by 12 perfect fifths (inner).
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Figure 3.18 shows the frequency ratios between adjacent notes of the 
Pythagorean major scale. A major scale consists of the following intervals: 
tone, tone, semitone, tone, tone, tone, semitone, and it can be seen that:

 

Frequency ratio of the Pythagorean semitone

Frequenc


256
243

yy ratio of the Pythagorean tone 
9
8  

3.4.2 Just tuning
Another important scale is the “just diatonic” scale which is made by keep-
ing the intervals that make up the major triads pure: the octave (2:1), the 
perfect fifth (3:2) and the major third (5:4) for triads on the tonic, domi-
nant and sub-dominant. The dominant and sub-dominant keynotes are a 
perfect fifth above and below the key note respectively. This produces all 
the notes of the major scale (any of which can be harmonized using one of 
these three chords). Taking the note C being used as a starting reference for 
convenience, the major scale is built as follows. The notes E and G are a 
major third (5:4) and a perfect fifth (3:2) respectively above the tonic, C:

 

E
C
G
C





5
4
3
2  

The frequency ratios of B and D are a major third (5:4) and a perfect fifth 
(3:2) respectively above the dominant, G, and they are related to C as:
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Figure 3.19 Frequency ratios between the notes of a C major Pythagorean scale and the tonic (C).
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The frequency ratios of the members of the just diatonic major scale are 
shown in Figure 3.20 relative to C for convenience, along with the fre-
quency ratios between adjacent notes (calculated by dividing the frequency 
ratio of the upper note of each pair to C by that of the lower). The figure 
shows that the just diatonic major scale (tone, tone, semitone, tone, tone, 
tone, semitone) has equal semitone intervals, but two different tone inter-
vals, the larger of which is known as a “major whole tone” and the smaller 
as a “minor whole tone:”

 

Frequency ratio of the just diatonic semitone

and freq


16
15

uuency ratio of the just diatonic major whole tone

and f


9
8

rrequency ratio of the just diatonic minor whole tone
10
9


 

The two whole tone and the semitone intervals appear as members of 
the musical intervals between adjacent members of the natural harmonic 
series (see Figure 3.3), which means that the notes of the scale are as con-
sonant with each other as possible for both melodic and harmonic musical 
phrases. However, the presence of two whole tone intervals means that this 

(The result for the D is brought down one octave to keep it within an 
octave of the C.)

The frequency ratios of A and C are a major third (5:4) and a perfect 
fifth (3:2) respectively above the sub-dominant F. The F is therefore a per-
fect fourth (4:3) above the C (perfect fourth plus a perfect fifth is an octave):
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Figure 3.20 Frequency ratios between the notes of a C major “just diatonic” scale and the tonic (C).
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scale can only be used in one key since each key requires its own tuning. 
This means, for example, that the interval between D and A is:

 

A
D

    
5
3

9
8

5
3

8
9

40
27  

which is a musically flatter fifth than the perfect fifth (3:2).
In order to tune a musical instrument for practical purposes to enable 

it to be played in a number of different keys, the Pythagorean comma has 
to be distributed among some of the fifths in the circle of fifths such that 
the note reached after 12 fifths is exactly seven octaves above the start-
ing note (see Figure 3.18). This can be achieved by flattening some of the 
fifths, possibly by different amounts, while leaving some perfect, or flatten-
ing all of the fifths by varying amounts, or even by additionally sharpening 
some and flattening others to compensate. There is therefore an infinite 
variety of possibilities, but none will result in just tuning in all keys. Many 
tuning systems were experimented with to provide tuning of thirds and 
fifths which were close to just tuning in some keys at the expense of other 
keys whose tuning could end up being so out-of-tune as to be unusable 
musically.

Padgham (1986) gives a fuller discussion of tuning systems. A num-
ber of keyboard instruments have been experimented with which had split 
black notes (in either direction) to provide access to their enharmonics, giv-
ing C# and Db, D# and Eb, F# and Gb, G# and Ab, and A# and Bb—for 
example, the McClure pipe organ in the Faculty of Music at the University 
of Edinburgh discussed by Padgham (1986)—but these have never become 
popular with keyboard players.

3.4.3 equal tempered tuning
The spreading of the Pythagorean comma unequally among the fifths in 
the circle results in an “unequal temperament.” Another possibility is to 
spread it evenly to give “equal temperament”, which makes modulation to 
all keys possible where each one is equally out-of-tune with the just scale. 
This is the tuning system commonly found on today’s keyboard instru-
ments. All semitones are equal to one twelfth of an octave. Therefore the 
frequency ratio (r) for an equal tempered semitone is a number which when 
multiplied by itself 12 times is equal to 2, or:

 r  2 1 059512 .  

A cent is one 
hundredth of a 
semitone.
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The equal tempered semitone is subdivided into “cents,” where one cent 
is one hundredth of an equal tempered semitone. The frequency ratio for 
one cent (c) is therefore:

 c r  100 1001 0595 1 000578. .  

Cents are widely used in discussions of pitch intervals and the results of 
psychoacoustic experiments involving pitch. Appendix 3 gives an equation 
for converting frequency ratios to cents and vice versa.

Music can be played in all keys when equal tempered tuning is used, as 
all semitones and tones have identical frequency ratios. However, no inter-
val is in-tune in relation to the intervals between adjacent members of the 
natural harmonic series (see Figure 3.3); therefore none is perfectly conso-
nant. However, intervals of the equal tempered scale can still be considered 

Figure 3.21 Fundamental frequency values to four significant figures for eight octaves 
of notes, four either side of middle C, tuned in equal temperament with a tuning reference of 
A4  440 Hz. (Middle C is marked with a black spot.)

In today’s equal 
tempered scale, 
no interval is in-
tune with integer 
ratios between 
frequencies except 
the octave.
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in terms of their consonance and dissonance, because although harmonics 
of pairs of notes that are in unison for pure intervals (see Tables 3.6 to 
3.12) are not identical in equal temperament, the difference is within the 
5% critical bandwidth criterion for consonance. Beats (see Figure 2.6) will 
exist between some harmonics in equal tempered chords which are not 
present in their pure counterparts.

Figure 3.21 shows the f0 values and the note naming convention used in 
this book for eight octaves, four either side of middle C, tuned in equal tem-
perament with a tuning reference of 440 Hz for A4: the A above middle C. 
The equal tempered system is found on modern keyboard instruments, but 
there is increasing interest among performing musicians and listeners alike 
in the use of unequal temperament. This may involve the use of original 
instruments or electronic synthesizers which incorporate various tuning sys-
tems. Padgham (1986) lists approximately 100 pipe organs in Britain which 
are tuned to an unequal temperament in addition to the McClure organ.
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4.1  A “BlACk BOx” MOdel Of MuSICAl 
INStruMeNtS

In this chapter a simple model is developed which allows the acoustics of 
all musical instruments to be discussed and, it is hoped, readily under-
stood. The model is used to explain the acoustics of stringed, wind and 
percussion instruments as well as the singing voice. A selection of anechoic 
(no reverberation) recordings of a variety of acoustic instruments and the 
singing voice is provided on tracks 8–61 on the accompanying CD. Any 
acoustic instrument has two main components:

n a sound source, and
n sound modifiers.

For the purposes of our simple model, the sound source is known as the 
“input” and the sound modifiers are known as the “system.” The result of 
the input passing through the system is known as the “output.” Figure 4.1 
shows the complete input/system/output model.

This model provides a framework within which the acoustics of musi-
cal instruments can be usefully discussed, reviewed and understood. Notice 
that the “output” relates to the actual output from the instrument, which 
is not that which the listener hears since it is modified by the acoustics 
of the environment in which the instrument is being played. The input/
system/output model can be extended to include the acoustic effects of the 
environment as follows.

If we are modeling the effect of an instrument being played in a room, 
then the output we require is the sound heard by the listener and not the 
output from the instrument itself. The environment itself acts as a sound 
modifier and therefore it too acts as a “system” in terms of the input/system/
output model. The input to the model of the environment is the output from 
the instrument being played. Thus the complete practical input/system/out-
put model for an instrument being played in a room is shown in Figure 4.2. 
Here, the output from the instrument is equal to the input to the room.

In order to make use of the model in practice, acoustic details are 
required for the “input” and “system” boxes to enable the output(s) to be 
determined. The effects of the room are described in Chapter 6. In this 
chapter, the “input” and “system” characteristics for stringed, wind and per-
cussion instruments as well as the singing voice are discussed. Such details 
can be calculated theoretically from first principles, or measured experimen-
tally in which case they must be carried out in an environment which either 
has no effect on the acoustic recording or has a known effect which can be 
accounted for mathematically. An environment which has no acoustic effect 
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is one where there are no reflections of sound—ideally this is known as “free 
space.” In practice, free space is achieved in a laboratory in an anechoic 
(“no echo”) room in which all sound reaching the walls, floor and ceiling 
is totally absorbed by large wedges of sound-absorbing material. However, 
anechoic rooms are rare, and a useful practical approximation to free space 
for experimental purposes is outside on grass during a windless day, with 
the experiment being conducted at a reasonable height above the ground.

This chapter considers the acoustics of stringed, wind, and percussion 
instruments. In each case, the sound source and the sound modifiers are 
discussed. These discussions are not intended to be exhaustive since the 
subject is a large one. Rather they focus on one or two instruments by way 
of examples as to how their acoustics can be described using the sound 
source and sound modifier model outlined above. References are included 
to other textbooks in which additional information can be found for those 
wishing to explore a particular area more fully.

Finally, the singing voice is considered. It is often the case that budding 
music technologists are able to make good approximations with their voices 
to sounds they wish to synthesize electronically or acoustically, and a basic 
understanding of the acoustics of the human voice can facilitate this. As a 
starting point for the consideration of the acoustics of musical instruments, 
the playing fundamental frequency ranges of a number of orchestral instru-
ments, as well as the organ, piano and singers, are illustrated in Figure 4.3.  
A nine octave keyboard is provided for reference on which middle C is 
marked with a black square.

Input System Output

fIgure 4.1
An input/system/output 
model for describing 
the acoustics of musical 
instruments.

InputSystemOutput

As heard
by listener

Modification
by room

Input
to room

Input System Output

Instrument
sound source

Instrument
sound modifiers

Output from
instrument

(=)

fIgure 4.2
The input/system/output 
model applied to an 
instrument being played in 
a room.

“Free space” is 
sometimes called 
“free field”.
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4.2 StrINged INStruMeNtS

The string family of musical instruments includes the violin, viola, violon 
‘cello’ and double bass and all their predecessors, as well as keyboard instru-
ments which make use of strings, such as the piano, harpsichord, clavichord 
and spinet. In each case, the acoustic output from the instrument can be 
considered in terms of an input sound source and sound modifiers as illus-
trated in Figure 4.1. A more detailed discussion on stringed instruments can 
be found in Hutchins (1975a, 1975b), Benade (1976), Rossing (2001), Hall 
(2001) and Fletcher and Rossing (1999). The playing fundamental frequency 
(f0) ranges of the orchestral stringed instruments are shown in Figure 4.3.

All stringed instruments consist of one or more strings stretched between 
two points, and the f0 produced by the string is dependent on its mass per 
unit length, length and tension. For any practical musical instrument, the 
mass per unit length of an individual string is constant, and changes are 
made to the tension and/or the length to enable different notes to be played. 
Figure 4.4 shows a string fixed at one end, supported on two single-point 
contact bridges, and passed over a pulley with a variable mass hanging on 

Soprano
Mezzo

Contralto
Tenor

Baritone
Bass

Harp
Piano

Violin
Viola

Violoncello
Double bass

Piccolo
Flute

Clarinet

Oboe
Cor Anglais

Trumpet

Marimba

French horn
Trombone
Tuba

C0 (16 Hz) C2 (65 Hz) C4 (262 Hz) C6 (1047 Hz) C8 (4186 Hz)
Timpani

Bassoon
Contra bassoon

Bass clarinet

Pipe organ (32′ to 2′)

fIgure 4.3
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length or tension of 
the string.
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the other end. The variable mass enables the string tension to be altered, and 
the length of the string can be altered by moving the right-hand bridge. In a 
practical musical instrument, the tension of each string is usually altered by 
means of a peg with which the string can be wound, or winched in, to tune 
the string, and the position of one of the points of support is varied to enable 
different notes to be played—except in instruments such as stringed keyboard 
instruments where individual strings are provided to play each note.

The string is set into vibration to provide the sound source to the 
instrument. A vibrating string on its own is extremely quiet because little 
energy is imparted to the surrounding air due to the small size of a string 
with respect to the air particle movement it can initiate. All practical 
stringed instruments have a body which is set in motion by the vibrations 
of the string(s) of the instrument, giving a large area from which vibration 
can be imparted to the surrounding air. The body of the instrument is the 
sound modifier. It imparts its own mechanical properties onto the acoustic 
input provided by the vibrating string (see Figure 4.5).

There are three main methods by which energy is provided to a stringed 
instrument. The strings are either “plucked,” “bowed” or “struck.” Instruments 
which are usually plucked or bowed include those in the violin family; instru-
ments whose strings are generally only plucked include the guitar, lute, and 
harpsichord; and the piano is an instrument whose strings are struck.

A vibrating string fixed at both ends, for example by being stretched 
across two bridge-like supports as illustrated in Figure 4.4, has a unique set of 
standing waves (see Chapter 1). Any observed instantaneous shape adopted 
by the string can be analyzed (and synthesized) as a combination of some 
or all of these standing wave modes. The first 10 modes of a string fixed 
at both ends are shown in Figure 4.6. In each case the mode is illustrated 
in terms of the extreme positions of the string between which it oscillates. 
Every mode of a string fixed at both ends is constrained not to move; there-
fore there cannot be any velocity, or displacement, at the ends themselves  
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and so these points are known as “velocity nodes” or, 
more usually, “displacement nodes.” Points of maxi-
mum movement are known as “velocity antinodes” or 
“displacement antinodes.”

It can be seen in Figure 4.6 that the first mode has 
two displacement nodes (at the ends of the string) and 
one displacement antinode (in the center). The sixth 
mode has seven displacement nodes and six displace-
ment antinodes. In general, a particular mode (n) of a 
string fixed at both ends has (n  1) displacement nodes 
and (n) displacement antinodes. The frequencies of the 
standing wave modes are related to the length of the 
string and the velocity of a transverse wave in a string   
by Equation 1.35.

4.2.1 Sound source from a plucked string
When a string is plucked, it is pulled a small distance 
away from its rest position and released. The nature of 
the sound source it provides to the body of the instru-
ment depends in part on the position on the string at 
which it is plucked. This is directly related to the dis-
placement component modes that a string can adopt. 
For example, if the string is plucked at the center, as 
indicated by the central dashed vertical line in Figure 
4.6, modes which have a node at the center of the string 

(the 2nd, 4th, 6th, 8th, 10th, etc., or the even modes) are not excited, and 
those with an antinode at the center (the 1st, 3rd, 5th, 7th, 9th, etc., or the 
odd modes) are maximally excited. If the string is plucked at a quarter of its 
length from either end (as indicated by the other dashed vertical lines in the 
figure), modes with a node at the plucking point (the 4th, 8th, etc.) are not 
excited and other modes are excited to a greater or lesser degree. In general, 
the modes that are not excited for a plucking point a distance (d) from the 
closest end of a string fixed at both ends are those with a node at the pluck-
ing position. They are given by:
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fIgure 4.6 The first 10 possible modes of 
vibration of a string of length (L) fixed at both ends.
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Thus if the plucking point is a third of the way along the string, the modes 
not excited are the 3rd, 6th, 9th, 12th, 15th, etc. For a component mode 
not to be excited at all, it should be noted that the plucking distance has 
to be exactly an integer fraction of the length of the string in order that it 
exactly coincides with nodes of that component.

This gives the sound input to the body of a stringed instrument when 
it is plucked. The frequencies (fn) of the component modes of a string sup-
ported at both ends can be related to the length, tension (T) and mass per 
unit length () of the string by substituting Equation 1.7 for the transverse 
wave velocity in Equation 1.35 to give:
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The frequency of the lowest mode is given by Equation 4.2a when (n  1):
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This is the f0 of the string which is also known as the “first harmonic” (see 
Table 3.1). Thus the first mode (f1) in Equation 4.2a is the f0 of string vibra-
tion. Equation 4.2a shows that the frequencies of the higher modes are har-
monically related to f0.

4.2.2 Sound source from a struck string
The piano is an instrument in which strings are struck to provide the sound 
source, and the relationship discussed in the last Section (4.2.1) concern-
ing the modes that will be missing in the sound source is equally relevant 
here. There is, however, an additional effect that is particularly relevant to 
the sound source in the piano, and this relates to the fact that the strings of 
a piano are under very high tension and therefore very hard compared with 
those on a harpsichord or plucked orchestral stringed instrument. Strings 
on a piano are struck by a hammer which is “fired” at the string from which 
it immediately bounces back so as not to interfere with the free vibration 
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of the string(s). When a piano string is struck by the hammer, it behaves 
partly like a bar because it is not completely flexible due to its considerable 
stiffness. This results in a slight raising in frequency of all the component 
modes with respect to the fundamental, an effect known as “inharmonic-
ity,” and this effect is greater for the higher modes.

Equation 4.2b assumes an ideal string; that is, a string with zero radius. 
Substituting Equation 4.2b into 4.2a gives the simple relationship between 
the frequency of any mode and that of the first mode:

 f nfn  1  

Any practical string must have a finite radius, and the effect is given in 
Equation 4.2c. This is the effect of inharmonicity, or the amount by which 
the actual frequencies of the modes vary from integer multiples of the fun-
damental.
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It can be seen that inharmonicity increases as the square of the compo-
nent mode (n2) and as the fourth power of the string radius (r4), and that 
it decreases with increased tension and as the square of increased length. 
Inharmonicity can be kept low if the strings are thin (small r), long (large L),  
and under high tension (high T). The effect would therefore be particu-
larly marked for bass strings if they were simply made thicker (larger r) 
to give them greater mass, since the variation is to the fourth power of r. 
Therefore in many stringed instruments, including pianos, guitars and vio-
lins, the bass strings are wrapped with wire to increase their mass without 
increasing the underlying core string’s radius (r). (A detailed discussion of 
the acoustics of pianos is given in: Benade, 1976; Askenfelt, 1990; Fletcher 
and Rossing, 1999.)

The notes of a piano are usually tuned to equal temperament (see 
Chapter 3) and octaves are then tuned by minimizing the beats between 
pairs of notes an octave apart. When tuning two notes an octave apart, the 
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components which give rise to the strongest sensation of beats are the first 
harmonic of the upper note and the second harmonic of the lower note. 
These are tuned in unison to minimize the beats between the notes. This 
results in the f0 of the lower note being slightly lower than half the f0 of the 
higher note due to the inharmonicity between the first and second compo-
nents of the lower note.

Inharmonicity on a piano increases as the strings become shorter and there-
fore the octave stretching effect increases with note pitch. The stretching 
effect is usually related to middle C and it becomes greater the further away 
the note of interest is in pitch. Figure 4.7 illustrates the effect in terms of 
the average deviation from equal tempered tuning across the keyboard of a 
small piano. Thus high notes and low notes on the piano are tuned sharp 
and flat respectively to what they would have been if all octaves were tuned 
pure with a frequency ratio of 2:1. From the figure it can be seen that this 
stretching effect amounts to approximately 35 cents sharp at C8 and 35 
cents flat at C1 with respect to middle C.

The piano keyboard usually has 88 notes from A0 (27.5 Hz) to C8 
(4186 Hz), giving it a playing range of just over seven octaves (see Figure 4.3).  
The use of thinner strings to help reduce inharmonicity means that less 
sound source energy is transferred to the body of the instrument, and over 
the majority of the piano’s range multiple strings are used for each note.  
A concert grand piano can have over 240 strings for its 88 notes: single, wire-
wrapped strings for the lowest notes, pairs of wire-wrapped strings for the 
next group of notes, and triplets of strings for the rest of the notes, the lower 
of which might be wire-wrapped. The use of multiple strings provides some 
control over the decay time of the note. If the multiple (2 or 3) strings of a 
particular note are exactly in-tune and beat free (see Section 2.2), the decay 

exAMple 4.1

If the f0 of a piano note is 400 hz and inharmonicity results in the second 
component being stretched to 801 hz, how many cents sharp will the note an 
octave above be if it is tuned for no beats between it and the octave below?
Tuning for no beats will result in the f0 of the upper note being 801 Hz, slightly greater 
than an exact octave above 400 Hz which would be 800 Hz. The frequency ratio 
(801/800) can be converted to cents using Equation A3.4 in Appendix 3:
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time is short as the exactly in-phase energy is transferred to the soundboard 
quickly. Appropriate tuning of multiple strings is a few cents apart, and this 
results in a richer sound which decays more slowly than exactly in-tune 
strings would. If the strings are out-of-tune by around 12 cents or more, then 
the result is the “pub piano” sound.

4.2.3 Sound source from a bowed string
The sound source that results from bowing a string is periodic and a con-
tinuous note can be produced while the bow travels in one direction. A bow 
supports many strands of hair, traditionally horsehair. Hair tends to grip 
in one direction but not in the other. This can be demonstrated with your 
own hair. Support the end of one hair firmly with one hand, and then grip 
the hair in the middle with the thumb and index finger of the other hand 
and slide that hand up and down the hair. You should feel the way the hair 
grips in one direction but slides easily in the other.

The bow is held at the end known as the “frog” or “heel,” and the other 
end is known as the “point” or “tip.” The hairs of the bow are laid out such 
that approximately half are laid one way round from heel to tip, and half are 
laid the other way round from tip to heel. In this way, about the same num-
ber of hairs are available to grip a string no matter in which direction the 
bow is moved (up bow or down bow). Rosin is applied to the hairs of a bow 
to increase its gripping ability. As the bow is moved across a string in either 
direction, the string is gripped and moved away from its rest position until 
the string releases itself, moving past its rest position until the bow hairs grip 
it again to repeat the cycle.

One complete cycle of the motion of the string immediately under a 
bow moving in one direction is illustrated in the graph on the right-hand 
side of Figure 4.8. (When the bow moves in the other direction, the pattern 
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is reversed.) The string moves at a constant 
velocity when it is gripped by the bow hairs 
and then returns rapidly through its rest 
position until it is gripped by the bow hairs 
again. If the minute detail of the motion 
of the bowed string is observed closely, for 
example by means of stroboscopic illumi-
nation, it is seen to consist of two straight-
line segments joining at a point which 
moves at a constant velocity around the 
dotted track as shown in the snapshot 
sequence in Figure 4.8.

The time taken to complete one cycle, 
or the fundamental period (T0), is the time 
taken for the point joining the two line 
segments to travel twice the length of the 
string (2L):
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Substituting Equation 1.7 for the transverse 
wave velocity gives:
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The f0 of vibration of the bowed string is 
therefore:
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Comparison with Equation 4.2a when 
(n  1) shows that this is the frequency of the first component mode of the 
string. Thus the f0 for a bowed string is the frequency of the first natural 
mode of the string, and bowing is therefore an efficient way to excite the 
vibrational modes of a string.

The sound source from a bowed string is that of the waveform of string 
motion which excites the bridge of the instrument. Each of the snapshots 
in Figure 4.8 corresponds to equal time instants on the graph of string 
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fIgure 4.8 One complete cycle of vibration of a bowed string 
and graph of string velocity at the bowing point as a function of time. 
(Adapted from Rossing, 2001.)
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displacement at the bowing point in the figure, from which the resulting 
force acting on the bridge of the instrument can be inferred to be of a simi-
lar shape to that at the bowing point. In its ideal form, this is a sawtooth 
waveform (see Figure 4.9). The spectrum of an ideal sawtooth waveform 
contains all harmonics and their amplitudes decrease with ascending fre-
quency as (1/n), where n is the harmonic number. The spectrum of an ideal 
sawtooth waveform is plotted in Figure 4.9 and the amplitudes are shown 
relative to the amplitude of the f0 component.

4.2.4 Sound modifiers in stringed instruments
The sound source provided by a plucked or bowed string is coupled to the 
sound modifiers of the instrument via a bridge. The vibrational properties 
of all elements of the body of the instrument play a part in determining 
the sound modification that takes place. In the case of the violin family, 
the components which contribute most significantly are the top plate (the 
plate under the strings that the bridge stands on and which has the f holes 
in it), the back plate (the back of the instrument), and the air contained 
within the main body of the instrument. The remainder of the instrument 
contributes to a much lesser extent to the sound-modification process, and 
there is still lively debate in some quarters about the importance or oth-
erwise of the glues, varnish, choice of wood and wood treatment used by 
highly regarded violin makers of the past.

Two acoustic resonances dominate the sound modification due to the 
body of instruments in the violin family at low frequencies: the resonance of 
the air contained within the body of the instrument or the “air resonance,” 
and the main resonance of the top plate or “top resonance.” Hall (2001) 
summarizes the important resonance features of a typical violin as follows:

n practically no response below the first resonance at approximately 
273 Hz (air resonance);

n another prominent resonance at about 473 Hz (top resonance);
n rather uneven response up to about 900 Hz, with a significant dip 

around 600–700 Hz;
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n better mode overlapping and more even response (with some 
exceptions) above 900 Hz;

n gradual decrease in response toward high frequencies.

Apart from the air resonance, which is defined by 
the internal dimensions of the instrument and the 
shape and size of the f holes, the detailed nature of the 
response of these instruments is related to the main 
vibrational modes of the top and back plates. As these 
plates are being shaped by detailed carving, the maker 
will hold each plate at particular points and tap it to 
hear how the so-called “tap tones” are developing to 
guide the shaping process. This ability is a vital part of 
the art of the experienced instrument maker in setting 
up what will become the resonant properties of the com-
plete instrument when it is assembled.

The acoustic output from the instrument is the 
result of the sound input being modified by the acous-
tic properties of the instrument itself. Figure 4.10 (from 
Hall, 2001) shows the input spectrum for a bowed G3 
(f0  196 Hz) with a typical response curve for a vio-
lin, and the resulting output spectrum. Note that the  
frequency scales are logarithmic, and therefore the har-
monics in the input and output spectra bunch together 
at high frequencies. The output spectrum is derived 
by multiplying the amplitude of each component of 
the input spectrum by the response of the body of the 
instrument at that frequency. In the figure, this mul-
tiplication becomes an addition since the amplitudes 
are expressed logarithmically as dB values, and adding 
logarithms of numbers is mathematically equivalent to 
multiplying the numbers themselves.

There are basic differences between the members of 
the orchestral string family (violin, viola, cello and dou-
ble bass). They differ from each other acoustically in 
that the size of the body of each instrument becomes 
smaller relative to the f0 values of the open strings 
(e.g., Hutchins, 1978). The air and tap resonances 
approximately coincide as follows: for the violin with 
f0 of the D4 (2nd string) and A4 (3rd string) strings 
respectively, for the viola with f0 values approximately 
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midway between the G3 and D4 (2nd and 3rd strings) and D4 and A4 (3rd 
and 4th strings) strings respectively, for the cello with f0 of the G2 string 
and approximately midway between the D3 and A3 (3rd and 4th strings) 
respectively, and for the double bass with f0 of the D2 (3rd string) and G2 
(4th string) strings respectively. Thus there is more acoustic support for the 
lower notes of the violin than for those of the viola or the double bass, and 
the varying distribution of these two resonances between the instruments 
of the string family is part of the acoustic reason why each member of the 
family has its own characteristic sound.

Figure 4.11 shows waveforms and spectra for notes played on two 
plucked instruments: C3 on a lute and F3 on a guitar. The decay of the 
note can be seen on the waveforms, and in each case the note lasts just 
over a second. The pluck position can be estimated from the spectra by 
looking for those harmonics which are reduced in amplitude and are integer  
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multiples of each other (see Equation 4.2a). The lute spectrum suggests a 
pluck point at approximately one-sixth of the string length due to the clear 
amplitude dips in the 6th and 12th harmonics, but there are also clear dips 
at the 15th and 20th harmonics.

An important point to note is that this is the spectrum of the output 
from the instrument, and therefore it includes the effects of the sound 
modifiers (e.g., air and plate resonances), so harmonic amplitudes are 
affected by the sound modifiers as well as the sound source. Also, the 15th 
and 20th harmonics are nearly 40 dB lower than the low harmonics in 
amplitude and therefore background noise will have a greater effect on their 
amplitudes. The guitar spectrum also suggests particularly clearly a pluck 
point at approximately one-sixth of the string length, given the dips in the 
amplitudes of the 6th, 12th and 18th harmonics.

Sound from stringed instruments does not radiate out in all directions to 
an equal extent and this can make a considerable difference if, for example, 
one is critically listening to or making recordings of members of the family. 
The acoustic output from any stringed instrument will contain frequency com-
ponents across a wide range, whether it is plucked, struck or bowed. In general, 
low frequencies are radiated in essentially all directions, with the pattern of 
radiation becoming more directionally focused as frequency increases from the 
mid to high range. In the case of the violin, low frequencies in this context are 
those up to approximately 500 Hz, and high frequencies, which tend to radi-
ate outwards from the top plate, are those above approximately 1000 Hz. The 
position of the listener’s ear or a recording microphone is therefore an impor-
tant factor in terms of the overall perceived sound of the instrument.

4.3 WINd INStruMeNtS

The discussion of the acoustics of wind instruments involves similar prin-
ciples to those used in the discussion of stringed instruments. However, the 
nature of the sound source in wind instruments is rather different but the 
description of the sound modifiers in wind instruments has much in com-
mon with that relating to possible modes on a string, but with a key differ-
ence that a string exhibits transverse wave motion, considered in terms of 
displacement modes, whereas in a pipe it is longitudinal wave motion, where 
considerations of the velocity and pressure modes are the key. This section 
concentrates on the acoustics of organ pipes to illustrate the acoustics of 
sound production in wind instruments. Some of the acoustic mechanisms 
basic to other wind instruments are given later in the section.

Wind instruments can be split into those with and those without reeds, 
and organ pipes can be split likewise, based on the sound source mechanism 

Wind instruments 
and the pipes of 
a pipe organ can 
be split into those 
without and those 
with reeds.
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involved, into “flues” and “reeds” respectively. Organ pipes are used in this 
section to introduce the acoustic principles of wind instruments with and 
without reeds as the sound source. Figure 4.12 shows the main parts of flue 
and reed pipes. Each is constructed of a particular material, usually wood or 
a tin–lead alloy, and has a resonator of a particular shape and size depend-
ing on the sound that the pipe is designed to produce (e.g., Audsley, 1965; 
Sumner, 1975; Norman and Norman, 1980). The sources of sound in the 
flue and the reed pipe will be considered first, followed by the sound modifi-
cation that occurs due to the resonator.

4.3.1 Sound source in organ flue pipes
The source of sound in flue pipes is described in detail in Hall (2001) and his 
description is as follows. The important features of a flue sound source are a 
narrow slit (the flue) through which air flows, and a wedge-shaped obstacle 
placed in the airstream from the slit. Figure 4.13 shows the detail of this 
mechanism for a wooden organ flue pipe (the similarity with a metal organ 
flue pipe can be observed in Figure 4.12). A narrow slit exists between the 
lower lip and the languid, and this is known as the “flue,” and the wedge-
shaped obstacle is the upper lip which is positioned in the airstream from 
the flue. This obstacle is usually placed off-center to the airflow.
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Air enters the pipe from the organ bellows 
via the foot and a thin sheet of air emerges from 
the flue. If the upper lip were not present, the air 
emerging from the flue would be heard as noise. 
This indicates that the airstream is turbulent. 
A similar effect can be observed if you form the 
mouth shape for the “ff” in far, in which the bot-
tom lip is placed in contact with the upper teeth to 
produce the “ff” sound. The airflow is turbulent, 
producing the acoustic noise which can be clearly 
heard. If the airstream flow rate is reduced, there is 
an air velocity below which turbulent flow ceases 
and acoustic noise is no longer heard. At this 
point the airflow has become smooth or “laminar.” 
Turbulent airflow is the mechanism responsible 
for the non-pitched sounds in speech such as the 
“sh” in shoe and the “ss” in sea, for which wave-
forms and spectra are shown in Figure 3.9.

When a wedge-like obstruction is placed in the airstream emerging from 
the flue a definite sound is heard known as an “edgetone.” Hall suggests a 
method for demonstrating this by placing a thin card in front of the mouth 
and blowing on its edge. Researchers are not fully agreed on the mecha-
nism which underlies the sound source in flues. The preferred explanation 
is illustrated in Figure 4.14, and it is described in relation to the sequence 
of snapshots in the figure as follows. Air flows to one side of the obstruc-
tion, causing a local increase in pressure on that side of it. This local pres-
sure increase causes air in its local vicinity to be moved out of the way, and 
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some finds its way in a circular motion into the pipe via the mouth. This 
has the effect of “bending” the main stream of air increasingly, until it flips 
into the pipe. The process repeats itself, only this time the local pressure 
increase causes air to move in a circular motion out of the pipe via the 
mouth, gradually bending the main airstream until it flips outside the pipe 
again. The cycle then repeats providing a periodic sound source to the pipe 
itself. This process is sometimes referred to as a vibrating “air reed” due to 
the regular flipping to and fro of the airstream.

The f0 of the pulses generated by this air reed mechanism in the 
absence of a pipe resonator is directly proportional to the airflow velocity 
from the flue, and inversely proportional to the length of the cut-up:
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In other words, f0 can be raised by either increasing the airflow velocity or 
reducing the cut-up. As the airflow velocity is increased or the cut-up size is 
decreased, there comes a point where the f0 jumps up in value. This effect 
can be observed in the presence of a resonator with respect to increasing the 
airflow velocity by blowing with an increasing flow rate into a recorder (or if 
available, a flue organ pipe). It is often referred to as an “overblown” mode.

The acoustic nature of the sound source in flues is set by the pipe voicer, 
whose job it is to determine the overall sound from individual pipes and to 
establish an even tone across complete ranks of pipes. The following com-
ments on the voicer’s art in relation to the sound source in flue pipes are 
summarized from Norman and Norman (1980), who give the main modifi-
cations made by the voicer in order of application as:

n adjusting the cut-up;
n “nicking” the languid and lower lip;
n adjusting languid height with respect to that of the lower lip.

Adjusting the cut-up needs to be done accurately to achieve an even tone 
across a rank of pipes. This is achieved on metal pipes by using a sharp, 
short, thick-bladed knife. A high cut-up produces a louder and more “hollow” 
sound, and a lower cut-up gives a softer and “edgier” sound. The higher the 
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cut-up, the greater the airflow required from the foot. However, the higher 
the airflow, the less prompt the speech of the pipe.

Nicking relates to a series of small nicks that are made in the approxi-
mating edges of the languid and the upper lip. This has the effect of reduc-
ing the high-frequency components in the sound source spectrum and giving 
the pipe a smoother, but slower, onset to its speech. More nicking is custom-
arily applied to pipes which are heavily blown. A pipe which is not nicked 
has a characteristic consonantal attack to its sound, sometimes referred to 
as a “chiff.” A current trend in organ voicing is the use of less or no nicking 
in order to take advantage of the onset chiff musically to give increased clar-
ity to notes, particularly in contrapuntal music (e.g., Hurford, 1994).

The height of the languid is fixed at manufacture for wooden pipes, but 
it can be altered for metal pipes. The languid controls, in part, the direc-
tion of the air flowing from the flue. If it is too high, the pipe will be slow 
to speak and may not speak at all if the air misses the upper lip completely. 
If it is too low the pipe will speak too quickly, or speak in an uncontrolled 
manner. A pipe is adjusted to speak more rapidly if it is set to speak with 
a consonantal chiff by means of little or no nicking. Narrow scaled pipes 
(small diameter compared with the length) usually have a “stringy” tone 
color and often have ears added (see Figure 4.12) which stabilize air reed 
oscillation. Some bass pipes also have a wooden roller or “beard” placed 
between the ears to aid prompt pipe speech.

4.3.2 Sound modifiers in organ flue pipes
The sound modifier in an organ flue pipe is the main body of the pipe itself, 
or its “resonator” (see Figure 4.12). Organ pipe resonators are made in a 
variety of shapes developed over a number of years to achieve subtleties of 
tone color, but the most straightforward to consider are resonators whose 
dimensions do not vary along their length, or resonators of “uniform cross-
section.” Pipes made of metal are usually round in cross-section and those 
made of wood are generally square (some builders make triangular wooden 
pipes, partly to save on raw material). These shapes arise mainly from ease 
of construction with the material involved.

There are two basic types of organ flue pipe: those that are open and 
those that are stopped at the end farthest from the flue itself (see Figure 
4.12). The flue end of the pipe is acoustically equivalent to an open end. 
Thus the open flue pipe is acoustically open at both ends, and the stopped 
flue pipe is acoustically open at one end and closed at the other. The air 
reed sound source mechanism in flue pipes as illustrated in Figure 4.14 
launches a pulse of acoustic energy into the pipe. When a compression 
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(positive amplitude) pulse of sound pressure energy is launched into a pipe, 
for example at the instant in the air reed cycle illustrated in the lower-right 
snapshot in Figure 4.14, it travels down the pipe at the velocity of sound as 
a compression pulse.

When the compression pulse reaches the far end of the pipe, it is 
reflected in one of the two ways described in the “standing waves” sec-
tion of Chapter 1 (Section 1.5.7), depending on whether the end is open 
or closed. At a closed end there is a pressure antinode and a compression 
pulse is reflected back down the pipe. At an open end there is a pressure 
node and a compression pulse is reflected back as a rarefaction pulse to 
maintain atmospheric pressure at the open end of the pipe. Similarly, a 
rarefaction pulse arriving at a closed end is reflected back as a rarefaction 
pulse, but as a compression pulse when reflected from an open end. All 
four conditions are illustrated in Figure 4.15.

When the action of the resonator on the air reed sound source in a flue 
organ pipe is considered (see Figure 4.14), it is found that the f0 of air reed 
vibration is entirely controlled by: (a) the length of the resonator, and (b) 
whether the pipe is open or stopped. This dependence of the f0 of the air 
reed vibration can be appreciated by considering the arrival and departure 
of pulses at each end of the open and the stopped pipes.

Figure 4.16 shows a sequence of snapshots of pressure pulses generated 
by the air reed traveling down an open pipe of 
length Lo (left) and a stopped pipe of length Ls 
(right), and how they drive the vibration of the 
air reed. (Air reed vibration is illustrated in a 
manner similar to that used in Figure 4.14.) 
The figure shows pulses moving from left to 
right in the upper third of each pipe, those 
moving from right to left in the center third, 
and the summed pressure in the lower third. 
A time axis with arbitrary but equal units 
is marked in the figure to show equal time 
intervals. The pulses travel an equal distance 
in each frame of the figure since an acoustic 
pulse moves at a constant velocity. The flue 
end of the pipe acts as an open end in terms of 
the manner in which pulses are reflected (see 
Figure 4.15). At every instant when a pulse 
arrives and is reflected from the flue end, the 
air reed is flipped from inside to outside when 
a compression pulse arrives and is reflected as 

= compression

= rarefaction

Compression pulse
arriving at open end

Rarefaction pulse
arriving at stopped end

Rarefaction pulse
arriving at open end

Compression pulse
arriving at stopped end
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e

fIgure 4.15 The reflected pulses resulting from a 
compression (upper) and rarefaction (lower) pulse arriving at an 
open (left) and a stopped (right) end of a pipe of uniform cross-
section. (Note: Time axes are marked in equal arbitrary units.)
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a rarefaction pulse, and vice versa when a rarefaction pulse arrives. This 
can be observed in Figure 4.16.

For the open pipe, the sequence in the figure begins with a compression 
pulse being launched into the pipe, and another compression pulse just 
leaving the open end (the presence of this second pulse will be explained 
shortly). The next snapshot (2) shows the instant when these two pulses 
reach the center of the pipe, their summed pressure being a maximum at 
this point. The pulses effectively travel through each other and emerge with 
their original identities due to “superposition” (see Chapter 1). In the third 
snapshot the compression pulse is being reflected from the open end of the 
pipe as a rarefaction pulse, and the air reed flips outside the pipe, generat-
ing a rarefaction pulse. (This may seem strange at first, but it is a necessary 
consequence of the event happening in the fifth snapshot.) The fourth snap-
shot shows two rarefactions at the center giving a summed pressure which 
is a minimum at this instant of twice the rarefaction pulse amplitude. In 
the fifth snapshot, when the rarefaction pulse is reflected from the flue 
end as a compression pulse, the air reed is flipped from outside to inside 
the pipe. One cycle is complete at this point since events in the fifth and 
first snapshots are similar. (A second cycle is illustrated  on the right-hand  
side of Figure 4.1 to enable comparison with events in the stopped pipe.)

The fundamental period for the open pipe is the time taken to complete 
a complete cycle (i.e., the time between a compression pulse leaving the 
flue end of the pipe and the next compression pulse leaving the flue end 
of the pipe). In terms of Figure 4.16 it is four time frames (snapshot one 

Stopped pipe

LsLo

Open pipe

T
im

e

RarefactionCompression

1

2

3

4

5

6

7

8

9

fIgure 4.16
Pulses traveling in open 
(left) and stopped (right) 
pipes when they drive an 
air reed sound source. 
(Note: Time axis is marked 
in equal arbitrary time 
units; pulses traveling left 
to right are shown in the 
upper part of each pipe, 
those going right to left are 
shown in the center, and 
the sum is shown in the 
lower part.)
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to snapshot five), being the time taken for the pulse to travel down to the 
other end and back (see Figure 4.15), or twice the open pipe length:
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(4.5)

In the stopped pipe, the sequence in Figure 4.15 again begins with a com-
pression pulse being launched into the pipe, but there is no second pulse. 
Snapshot two shows the instant when the pulses reach the center of the 
pipe, and the third snapshot the instant when the compression pulse is 
reflected from the stopped end as a compression pulse (see Figure 4.15) and 
the summed pressure is a maximum for the cycle of twice the amplitude  
of the compression pulse. The fourth snapshot shows the compression pulse 
at the center and in the fifth, the compression pulse is reflected from the flue 
end as a rarefaction pulse, flipping the air reed from inside to outside the pipe. 
The sixth snapshot shows the rarefaction pulse halfway down the pipe and  
the seventh shows its reflection as a rarefaction pulse from the stopped end 
when the summed pressure there is the minimum for the cycle of twice the 
amplitude of the rarefaction pulse. The eighth snapshot shows the rarefac-
tion pulse halfway back to the flue end and, by the ninth, one cycle is com-
plete, since events in the ninth and first snapshots are the same.

It is immediately clear that one cycle for the stopped pipe takes twice as 
long as one cycle for the open pipe if the pipe lengths are equal (ignoring a 
small end correction which has to be applied in practice). Its fundamental 
period is therefore double that for the open pipe, and its f0 is therefore half 
that for the open pipe, or an octave lower. This can be quantified by consid-
ering that the time taken to complete a complete cycle is the time required 
for the pulse to travel to the other end of the pipe and back twice, or four 
times the stopped pipe length (see Figure 4.15):
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where fundamental period of stopped pipe
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(4.6)

The natural modes of a pipe are constrained as described in the “stand-
ing waves” section of Chapter 1. Equation 1.35 gives the frequencies of 
the modes of an open pipe and Equation 1.36 gives the frequencies of the 
modes of a stopped pipe. In both equations, the velocity is the velocity of 
sound (c).

The frequency of the first mode of the open pipe is given by Equation 
1.30 when (n  1):
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exAMple 4.2

If an open pipe and a stopped pipe are the same length, what is the relationship 
between their f0 values?
Let (Ls  Lo  L) and substitute into Equations 4.5 and 4.6:
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Therefore f0(stopped) is an octave lower than f0(open) (frequency ratio 1:2).
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which is the same value obtained in Equation 4.5 by considering pulses in 
the open pipe. Using Equation 1.35, the frequencies of the other modes can 
be expressed in terms of its f0 value as follows:
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In general:
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(4.8)

The modes of the open pipe are thus all harmonically related and all har-
monics are present. The musical intervals between the modes can be read 
from Figure 3.3.

The frequency of the fundamental mode of the stopped pipe is given by 
Equation 1.36 when (n  1):
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This is the same value obtained in Equation 4.6 by considering pulses in 
the stopped pipe. The frequencies of the other stopped pipe modes can be 
expressed in terms of its fstopped using Equation 1.36 as follows:
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In general:

 
f n fnstopped stopped ( ) ( )( ) 2 1 1  (4.10)

 where     ...n  1 2 3 4, , , ,  

Thus the modes of the stopped pipe are harmonically related, but only  
the odd-numbered harmonics are present. The musical intervals between 
the modes can be read from Figure 3.3.

In open and stopped pipes the pipe’s resonator acts as the sound modi-
fier and the sound source is the air reed. The nature of the spectrum of the 
air reed source depends on the detailed shape of the pulses launched into 
the pipe, which in turn depends on the pipe’s voicing summarized above. If 
a pipe is overblown, its f0 jumps to the next higher mode that the resonator 
can support: up one octave to the second harmonic for an open pipe, and 
up an octave and a fifth to the third harmonic for the stopped pipe.

The length of the resonator controls the f0 of the air reed (see  
Figure 4.15) and the natural modes of the pipe are the frequencies that 
the pipe can support in its output. The amplitude relationship between 
the pipe modes is governed by the material from which the pipe is  
constructed and the diameter of the pipe with respect to its length. In 
particular, wide pipes tend to be weak in upper harmonics. Organ pipes 
are tuned by adjusting the length of their resonators. In open pipes this 
is usually done nowadays by means of a tuning slide fitted round the out-
side of the pipe at the open end, and for stopped pipes by moving the 
stopper (see Figure 4.12).

A stopped organ pipe has an f0 value which is an octave below that of 
an open organ pipe (Example 4.2), and, where space is limited in an organ, 
stopped pipes are often used in the bass register and played by the pedals. 
However, the trade-off is between the physical space saved and the acoustic 
result in that only the odd-numbered harmonics are supported. Figure 4.17  
illustrates this with waveforms and spectra for middle C played on a 
gedackt 8 and a principal 8 (Section 5.4 describes organ stop footages: 8, 
4, etc.). The gedackt stop has stopped wooden pipes, and the spectrum 
clearly shows the presence of odd harmonics only, in particular the first, 
third and fifth. The principal stop consists of open metal pipes, and odd 
and even harmonics exist in its output spectrum. Although the pitch of 
these stops is equivalent, and they are therefore both labeled 8, the stopped 
gedackt pipe is half the length of the open principal pipe.



ChApter 4: Acoustic Model for Musical Instruments192
4.3.3 Woodwind flue instruments
Other musical instruments which have an air 
reed sound source include the recorder and the 
flute. Useful additional material on woodwind flue 
instruments can be found in Benade (1976) and 
Fletcher and Rossing (1999). The air reed action is 
controlled by oscillatory changes in flow of air in 
and out of the flue (see Figure 4.16), often referred 
to as a “flow-controlled valve,” and therefore there 
must be a velocity antinode and a pressure node. 
Hence the flue end of the pipe is acting as an open 
end, and woodwind flue instruments act acousti-
cally as pipes open at both ends (see Figure 4.18).

Players are able to play a number of differ-
ent notes on the same instrument by changing  
the effective acoustic length of the resonator. This 
can be achieved, for example, by means of the  
sliding piston associated with a swanee whistle  
or more commonly when particular notes are req- 
uired, by covering and uncovering holes in the 
pipe walls known as “finger holes.” A hole in a 
pipe will act in an acoustically similar manner to 
an open pipe end (pressure node, velocity anti-
node). The extent to which it does this is deter-
mined by the diameter of the hole with respect to 
the pipe diameter. When this is large with respect 
to the pipe diameter, as in the flute, the uncov-
ered hole acts acoustically as if the pipe had an 
open end at that position. Smaller finger holes 
result acoustically in the effective open end being 

further down the pipe (away from the flue end). This is an important fac-
tor in the practical design of bass instruments with long resonators since 
it can enable the finger holes to be placed within the physical reach of a 
player’s hands. It does, however, have an important consequence on the 
frequency relationship between the modes, and this is explored in detail 
below in connection with woodwind reed instruments. The other way to 
give a player control over finger holes which are out of reach, for example 
on a flute, is by providing each hole with a pad controlled by a key mecha-
nism of rods and levers operated by the player’s fingers to close or open the 
hole (depending on whether the hole is normally open or closed by default).
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fIgure 4.17 Waveforms and spectra for middle C  
(C4) played on a gedackt 8 (stopped flue) and a principal 8 
(open flue).
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In general, a row of finger holes is gradually uncovered to effectively 
shorten the acoustic length of the resonator as an ascending scale is played. 
Occasionally some cross-fingering is used in instruments with small holes or 
small pairs of holes such as the recorder as illus-
trated in Figure 4.19. Here, the pressure node is 
further away from the flue than the first uncovered 
hole itself such that the state of other holes beyond 
it will affect its position. The figure shows typical 
fingerings used to play a two octave C major scale 
on a descant or tenor recorder. Hole fingerings are 
available to enable notes to be played which cover 
a full chromatic scale across one octave. To play 
a second octave on woodwind flue instruments, 
such as the recorder or flute, the flue is overblown. 
Since these instruments are acoustically open at 
both ends, the overblown flue jumps to the second 
mode which is one octave higher than the first (see 
Equation 4.8 and Figure 3.3). The finger holes can 
be reused to play the notes of the second octave.

Once an octave and a fifth above the bot-
tom note has been reached, the flue can be over-
blown to the third mode (an octave and a fifth 
above the first mode) and the fingering can be 
started again to ascend higher. The fourth mode 
is available at the start of the third octave, and 
so on. Overblowing is supported in instruments 
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such as the recorder by opening a small “register” or “vent” hole which is 
positioned such that it is at the pressure antinode for unwanted modes and 
these modes will be suppressed. The register hole marked in Figure 4.19 is a 
small hole on the back of the instrument which is controlled by the thumb 
of the left hand which either covers it completely, half covers it by press-
ing the thumb nail end-on against it, or uncovers it completely. To suppress 
the first mode in this way without affecting the second, this hole should be 
drilled in a position where the undesired mode has a pressure maximum. 
When all the tone holes are covered, this would be exactly halfway down 
the resonator—a point where the first mode has a pressure maximum and  
is therefore reduced, but the second mode has a pressure node and is there-
fore unaffected (see Figure 4.18). Register holes can be placed at other posi-
tions to enable overblowing to different modes. In practice, register holes may 
be set in compromise positions because they have to support all the notes 
available in that register, for which the effective pipe length is altered by  
uncovering tone holes.

A flute has a playing range between B3 and D7, and the piccolo sounds 
one octave higher between B4 and D8 (see Figure 4.3). Flute and piccolo 
players can control the stability of the overblown modes by adjusting their lip 
position with respect to the embouchure hole as illustrated in Figure 4.20. 
The air reed mechanism can be compared with that of flue organ pipes illus-
trated in Figures 4.13 and 4.14 as well as the associated discussion relating  
to organ pipe voicing. The flautist is able to adjust the distance between  
the flue outlet (the player’s lips) and the edge of the mouthpiece, marked as 
the “cut-up” in the figure, a term borrowed from organ nomenclature (see 

Figure 4.13), by rolling the flute as indicated by the double-ended 
arrow. In addition, the airflow velocity can be varied as well as the 
fine detailed nature of the airstream dimensions by adjusting the 
shape, width and height of the opening between the lips. The flautist 
therefore has direct control over the stability of the overblown modes 
(Equation 4.4).

4.3.4 Sound source in organ reed pipes
The basic components of an organ reed pipe are shown in Figure 4.12.  
The sound source results from the vibrations of the reed, which  
is slightly larger than the shallot opening, against the edges of the 
shallot. Very occasionally, organ reeds make use of “free reeds,” 
which are cut smaller than the shallot opening and move in and 
out of the shallot without coming into contact with its edges. In its 
rest position, as illustrated in Figure 4.12, there is a gap between the 
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available to a flautist.
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reed and shallot, enabled by the slight curve in the reed itself. The vibrat-
ing length of the reed is governed by the position of the “tuning wire,” or 
“tuning spring,” which can be nudged up or down to make the vibrating 
length longer or shorter, accordingly lowering or raising the f0 of the reed 
vibration.

The reed vibrates when the stop is selected and a key on the appropriate 
keyboard is pressed. This causes air to enter the boot and flow past the open 
reed via the shallot to the resonator. The gap between the reed and shallot is 
narrow, and for air to flow there must be a higher pressure in the boot than 
in the shallot, which tends to close the reed fractionally, resulting in the gap 
between the reed and shallot being narrowed. When the gap is narrowed, 
the airflow rate is increased and the pressure difference which supports this 
higher airflow is raised. The increase in pressure difference exerts a slightly 
greater closing force on the reed, and this series of events continues, acceler-
ating the reed towards the shallot until it hits the edge of the shallot, closing 
the gap completely and rapidly.

The reed is springy and once the gap is closed and the flow has dropped 
to zero, the reed’s restoring force causes the reed to spring back towards its 
equilibrium position, opening the gap. The reed overshoots its equilibrium 
position, stops, and returns towards the shallot, in a manner similar to its 
vibration if it had been displaced from its equilibrium position and released 
by hand. Airflow is restored via the shallot and the cycle repeats.

In the absence of a resonator, the reed would vibrate at its natural fre-
quency. This is the frequency at which it would vibrate if it were plucked. 
If a plucked reed continues to vibrate for a long time, then it has a strong 
tendency to vibrate at a frequency within a narrow range but, if it vibrates 
for a short time, there is a wide range of frequencies over which it is able 
to vibrate. This effect is illustrated in Figure 4.21. This difference is exhib-
ited depending on the material from which the reed is made and how it 
is supported. A reed which vibrates over a narrow frequency range is usu-
ally made from brass and supported rigidly, and is known as a “hard” reed.  
A reed which vibrates over a wide range might be made from cane or plas-
tic, held in a pliable support, and known as a “soft” reed. As shown in the 
figure, the natural period (TN) is related to the natural frequency (FN) as:
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A reed vibrating against a shallot shuts off the flow of air rapidly and 
totally, and the consequent acoustic pressure variations are the sound 
source provided to the resonator. The rapid shutting off of the airflow 
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produces a rapid, instantaneous drop in 
acoustic pressure within the shallot (as 
air flowing fast into the shallot is sud-
denly cut off). A rapid amplitude change 
in a waveform indicates a relatively high  
proportion of high harmonics are present. 
The exact nature of the sound source spec-
trum depends on the particular reed, shal-
lot and bellows pressure being considered.  
Free reeds which do not make contact with 
a shallot, as found for example in a harmon-
ica or harmonium, do not produce as high a 
proportion of high harmonics since the air-
flow is never completely shut off.

4.3.5 Sound modifiers in organ reed pipes
All reed pipes have resonators. The effect of a resonator has already been 
described and illustrated in Figure 4.16 in connection with air reeds. The 
same principles apply to reed pipes, but there is a major difference in that 
the shallot end of the resonator acts as a stopped end (as opposed to an 
open end as in the case of a flue). This is because during reed vibration, the 
pipe is either closed completely at the shallot end (when the reed is in con-
tact with the shallot) or open with a very small aperture compared with the 
pipe diameter.

Organ reed pipes have hard reeds, which have a narrow natural fre-
quency range (see Figure 4.21). Unlike the air reed, the presence of a res-
onator does not control the frequency of vibration of the hard reed. The 
sound-modifying effect of the resonator is based on the modes it supports 
(see Figure 4.18), bearing in mind the closed end at the shallot. Because the 
reed itself fixes the f0 of the pipe, the resonator does not need to reinforce 
the fundamental and fractional length resonators are sometimes used to 
support only the higher harmonics. Figure 4.22 shows waveforms and spec-
tra for middle C (C4) played on a hautbois 8, or oboe 8, and a trompette 
8, or trumpet 8. Both spectra exhibit an overall peak around the sixth/
seventh harmonic. For the trompette this peak is quite broad with the odd 
harmonics dominating the even ones up to the tenth harmonic, probably a 
feature of its resonator shape. The hautbois spectrum exhibits more dips in 
the spectrum than the trompette—these are all features which characterize 
the sounds of different instruments as being different.
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4.3.6 Woodwind reed instruments
Woodwind reed instruments make use of either a single or a double vibrat-
ing reed sound source which controls the flow of air from the player’s lungs 
to the instrument. The action of a vibrating reed at the end of a pipe is 
controlled as a function of the relative air pressure on either side of it in 
terms of when it opens and closes. It is therefore usually described as a 
pressure-controlled valve, and the reed end of the pipe acts as a stopped end 
(pressure antinode and velocity node—see Figure 4.18). Note that although 
the reed opens and closes such that airflow is not always zero, the reed 
opening is very much smaller than the pipe diameter elsewhere, making a 
stopped end reasonable. This is in direct contrast to the air reed in wood-
wind flue instruments such as the flute and recorder (see above), which, as 
a flow-controlled valve, provides a velocity antinode and a pressure node, 
and where the flue end of the pipe acts as an open end (see Figure 4.18).
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Soft reeds are employed in woodwind reed instruments which can 
vibrate over a wide frequency range (see Figure 4.21). The reeds in clari-
nets and saxophones are single reeds which can close against the edge of 
the mouthpiece as in organ reed pipes where they vibrate against their 
shallots. The oboe and bassoon on the other hand use double reeds, but 
the basic opening and closing action of the sound source mechanism is  
the same.

Woodwind reed instruments have resonators whose modal behavior is 
crucial to the operation of these instruments and provide the sound modi-
fier function. Woodwind instruments incorporate finger holes to enable 
chromatic scales to be played from the first mode to the second mode 
when the fingering can be used again as the reed excites the second mode. 
These mode changes continue up the chromatic scale to cover the full play-
ing range of the instrument (see Figure 4.3). Clearly it is essential that the 
modes of the resonator retain their frequency ratios relative to each other as 
the tone holes are opened, or else the instrument’s tuning will be adversely 
affected as higher modes are reached. Benade (1976) summarizes this effect 
and indicates the resulting constraint as follows:

Preserving a constant frequency ratio between the vibrational modes 
as the holes are opened is essential in all woodwinds and provides a 
limitation on the types of air column (often referred to as the bore) 
that are musically useful.

The musically useful bores in this context are based on tubing that is either 
cylindrical, as in the clarinet, or conical as in the oboe, cor Anglais, and 
members of the saxophone and bassoon families. The cylindrical resonator 
of a clarinet acts as a pipe that is stopped at the reed end (see above) but is 
open at the other. Odd numbered modes only are supported by such a reso-
nator (see Figure 4.18), and its f0 is an octave lower (see Example 4.2) than 
that of an instrument with a similar length pipe which is open at both ends, 
such as a flute (see Figure 4.3). The first overblown mode of a clarinet is 
therefore the third mode, an interval of an octave and a fifth (see Figure 3.3),  
and therefore, unlike a flute or recorder, it has to have sufficient holes to 
enable at least 19 chromatic notes to be fingered within the first mode prior 
to transition to the second.

Conical resonators that are stopped at the reed end and open at the 
other support all modes in a harmonically related manner. Taylor (1976) 
gives a description of this effect as follows:

Suppose by some means we can start a compression from the 
narrow end; the pipe will behave just as our pipe open at both ends 
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until the rarefaction has returned to the start. Now, because the pipe 
has shrunk to a very small bore, the speed of the wave slows down 
and no real reflection occurs. . . . The result is that we need only 
consider one journey out and one back regardless of whether the 
pipe is open or closed at the narrow end. . . . The conical pipe will 
behave something like a pipe open at both ends as far as its modes 
are concerned.

The conical resonator therefore supports all modes, and the overblown 
mode of instruments with conical resonators, such as the oboe, cor Anglais, 
bassoon and saxophone family, is therefore to the second mode, or up an 
octave. Sufficient holes are therefore required for at least 12 chromatic 
notes to be fingered to enable the player to arrive at the second mode from 
the first.

The presence of a sequence of open tone holes in a pipe resonator of 
any shape is described by Benade (1976) as a tone-hole lattice. The effec-
tive acoustical end-point of the pipe varies slightly as a function of fre-
quency when there is a tone-hole lattice, and therefore the effective pipe 
length is somewhat different for each mode. A pipe with a tone-hole lattice 
is acoustically shorter for low-frequency standing wave modes compared 
with higher-frequency modes, and therefore the higher-frequency modes are 
increasingly lowered slightly in frequency (lengthening the wavelength low-
ers the frequency). Above a particular frequency, described by Benade (1976) 
as the open-holes lattice cut-off frequency (given as around 350–500 Hz 
for quality bassoons, 1500 Hz for quality clarinets and between 1100 
and 1500 Hz for quality oboes), sound waves are not reflected due to the  
presence of the lattice. Benade notes that this has a direct effect on the 
perceived timbre of woodwind instruments, correlating well with descrip-
tions such as bright or dark given to instruments by players. It should also 
be noted that holes that are closed modify the acoustic properties of the  
pipe also, and this can be effectively modeled as a slight increase in pipe 
diameter at the position of the tone hole. The resulting acoustic change is 
considered below.

In order to compensate for these slight variations in the frequencies of 
the modes produced by the presence of open and closed tone holes, altera-
tions can be made to the shape of the pipe. These might include flaring the 
open end, adding a tapered section, or small local voicing adjustments by 
enlarging or constricting the pipe, which on a wooden instrument can be 
achieved by reaming out or adding wax respectively (e.g., Nederveen, 1969). 
The acoustic effect on individual pipe mode frequencies of either enlarging or 
constricting the size of the pipe depends directly on the mode’s distribution  
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of standing wave pressure nodes and antinodes (or velocity antinodes and 
nodes respectively). The main effect of a constriction in relation to pressure 
antinodes (velocity nodes) is as follows (Kent and Read, 1992):

n A constriction near a pressure node (velocity antinode) lowers that 
mode’s frequency.

n A constriction near a pressure antinode (velocity node) raises that 
mode’s frequency.

A constriction at a pressure node (velocity antinode) has the effect of reduc-
ing the flow at the constriction since the local pressure difference across the 
constriction has not changed. Benade (1976) notes that this is equivalent to 
raising the local air density, and the discussion in Chapter 1 indicates that 
this will result in a lowering of the velocity of sound (see Equation 1.1) 
and therefore a lowering in the mode frequency (see Equations 4.7 and 4.9).  
A constriction at a pressure antinode (velocity node), on the other hand, 
provides a local rise in acoustic pressure which produces a greater oppo-
sition to local airflow of the sound waves that combine to produce the 
standing wave modes. This is equivalent to raising the local springiness in 
the medium (air), which is shown in Chapter 1 to be equivalent for air in
Young’s modulus (Egas), which raises the velocity of sound (see Equation 1.5)  
and therefore raises the mode frequency (see Equations 4.7 and 4.9). By the 
same token, the effect of locally enlarging a pipe will be exactly opposite to 
that of constricting it.

Knowledge of the position of the pressure and velocity nodes and anti-
nodes for the standing wave modes in a pipe therefore allows the effect on 
the mode frequencies of a local constriction or enlargement of a pipe to be 
predicted. Figure 4.23 shows the potential mode frequency variation for the 
first three modes of a cylindrical stopped pipe that could be caused by a 
constriction or enlargement at any point along its length. (The equivalent 
diagram for a cylindrical pipe open at both ends could be readily produced 
with reference to Figures 4.18 and 4.23; this is left as an exercise for the 
interested reader.)

The upper part of Figure 4.23 (taken from Figure 4.18) indicates the 
pressure and velocity node and antinode positions for the first three stand-
ing wave modes. The lower part of the figure exhibits plus and minus signs 
to indicate where that particular mode’s frequency would be raised or low-
ered respectively by a local constriction or enlargement at that position in 
the pipe. The size of the signs indicates the sensitivity of the frequency vari-
ation based on how close the constriction is to the mode’s pressure/velocity 
nodes and antinodes shown in the upper part of the figure. For example, a 
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constriction close to the closed end of a cylindrical pipe will raise the fre-
quencies of all modes since there is a pressure antinode at a closed end, 
whereas an enlargement at that position would lower the frequencies of 
all modes. However, if a constriction or enlargement were made one-third 
the way along a stopped cylindrical pipe from the closed end, the frequen-
cies of the first and third modes would be raised somewhat, but that of 
the second would be lowered maximally. By creating local constrictions 
or enlargements, the skilled maker is able to set up a woodwind instru-
ment to compensate for the presence of tone holes such that the modes 
remain close to being in integer frequency ratios over the playing range of 
the instrument.

Figure 4.24 shows waveforms and spectra for the note middle C played 
on a clarinet and a tenor saxophone. The saxophone spectrum contains all 
harmonics since its resonator is conical. The clarinet spectrum exhibits the 
odd harmonics clearly as its resonator is a cylindrical pipe closed at one end 
(see Figure 4.18), but there is also energy clearly visible in some of the even 
harmonics. Although the resonator itself does not support the even modes, 
the spectrum of the sound source does contain all harmonics (the saxophone 
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and the clarinet are both single reed instruments). Therefore some energy 
will be radiated by the clarinet at even harmonics.

Sundberg (1989) summarizes this effect for the clarinet as follows:

This means that the even-numbered modes are not welcome in the 
resonator. . . . A common misunderstanding is that these partials are 
all but missing in the spectrum. The truth is that the second partial 
may be about 40 dB below the fundamental, so it hardly contributes 
to the timbre. Higher up in the spectrum the differences between 
odd- and even-numbered neighbors are smaller. Further . . . the 
differences can be found only for the instruments’ lower tones.

This description is in accord with the spectrum in Figure 4.24, where the 
amplitude of the second harmonic is approximately 40 dB below that of 
the fundamental, and the odd/even differences become less with increased 
frequency.
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4.3.7 Brass instruments
The brass instrument family has an interesting history from early instru-
ments derived from natural tube structures such as the horns of animals, 
seashells and plant stems, through a variety of wooden and metal instru-
ments to today’s metal brass orchestral family (e.g., Campbell and Greated, 
1998; Fletcher and Rossing, 1999). The sound source in all brass instru-
ments is the vibrating lips of the player in the mouthpiece. They form a 
double soft reed, but the player has the possibility of adjusting the physical 
properties of the double reed by lip tension and shape. The lips act as a 
pressure-controlled valve in the manner described in relation to the wood-
wind reed sound source, and therefore the mouthpiece end of the instru-
ment acts acoustically as a stopped end (pressure antinode and velocity 
node—see Figure 4.18).

The double reed action of the lips can be illustrated if the lips are held 
slightly apart, and air is blown between them. For slow airflow rates noth-
ing is heard, but, as the airflow is increased, acoustic noise is heard as the 
airflow becomes turbulent. If the flow is increased further, the lips will 
vibrate together as a double reed. This vibration is sustained by the physi-
cal vibrational properties of the lips themselves, and an effect known as the 
“Bernoulli effect.”

As air flows past a constriction, in this case the lips, its velocity 
increases. The Bernoulli effect is based on the fact that at all points the 
sum of the energy of motion, or “kinetic” energy, plus the pressure energy, 
or “potential” energy, must be constant at all 
points along the tube. Figure 4.25 illustrates 
this effect in a tube with a flexible constriction. 
Airflow direction is represented by the lines with 
arrows, and the velocity of airflow is represented 
by the distance between these lines. Since airflow 
increases as it flows through the constriction, the 
kinetic energy increases. In order to satisfy the 
Bernoulli principle that the total energy remains 
constant, the potential energy or the pressure at 
the point of constriction must therefore reduce. 
This means that the force on the tube walls is 
lower at the point of constriction.

If the wall material at the point of constriction 
is elastic and the force exerted by the Bernoulli 
effect is sufficient to move the walls’ mass (such as 
the brass player’s lips) from its rest (equilibrium) 
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fIgure 4.25 An illustration of the Bernoulli effect 
(potential energy  kinetic energy  a constant) in a tube 
with a constriction. (Note: Lines with arrows represent airflow 
direction, and the distance between them is proportional to the 
airflow velocity. PE  potential energy; KE  kinetic energy.)
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position, then the walls are sucked together a little (compare the right- and 
left-hand illustrations in the figure). Now the kinetic energy (airflow veloc-
ity) becomes greater because the constriction is narrower; thus the poten-
tial energy (pressure) must reduce some more to compensate (compare the 
graphs in the figure), and the walls of the tube are sucked together with 
greater force. Therefore the walls are accelerated together as the constric-
tion narrows until they smack together, cutting off the airflow. The air 
pressure in the tube tends to push the constriction apart, as does the natu-
ral tendency of the walls to return to their equilibrium position. Like two 
displaced pendulums, the walls move past their equilibrium position, stop 
and return towards each other, and the Bernoulli effect accelerates them 
together again. The oscillation of the walls will be sustained by the airflow, 
and the vibration will be regular if the two walls at the point of constriction 
have similar masses and tensions, such as the lips.

The lip reed vibration is supported by the resonator of the brass instru-
ment formed by a length of tubing attached to a mouthpiece. Some mecha-
nism is provided to enable the player to vary the length of the tube, which was 
done originally, for example, in the horn family by adding different lengths of 
tubing or “crooks” by hand. Nowadays this is accomplished by means of a 
sliding section as in the trombone or by adding extra lengths of tubing by 
means of valves. The tube profile in the region of the trombone slide or tun-
able valve mechanism has to be cylindrical in order for slides to function.

All brass instruments consist of four sections (see Figure 4.26): mouth-
piece, a tapered mouthpipe, a main pipe fitted with slide or valves which is 
cylindrical (e.g., trumpet, French horn, trombone) or conical (e.g., cornet, 
flugelhorn, baritone horn, tuba), and a flared bell (Benade, 1976; Hall, 2001). 
If a brass instrument consisted only of a conical main pipe, all modes would 
be supported (see discussion on woodwind reed instruments above), but, if it 
were cylindrical, it acts as a stopped pipe due to the pressure-controlled action 
of the lip reed and therefore only odd-numbered modes would be supported 
(see Figure 4.18). However, instruments in the brass family support almost all 
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modes which are essentially harmonically related due to the acoustic action of 
the addition of the mouthpiece and bell.

The bell modifies as a function of frequency the manner in which the 
open end of the pipe acts as a reflector of sound waves arriving there from 
within the pipe. A detailed discussion is provided by Benade (1976) from 
which a summary is given here. Lower-frequency components are reflected 
back into the instrument from the narrower part of the bell while higher-
frequency components are reflected from the wider regions of the bell. 
Frequencies higher than a cut-off frequency determined by the diameter of 
the outer edge of the bell (approximately 1500 Hz for a trumpet) are not 
reflected appreciably by the bell. Adding a bell to the main bore of the 
instrument has the effect of making the effective pipe length longer with 
increasing frequency. The frequency relationship between the modes of the 
stopped cylindrical pipe (odd-numbered modes only: 1f, 3f, 5f, 7f, etc.) will 
therefore be altered such that they are brought closer together in frequency. 
This effect is greater for the first few modes of the series.

The addition of a mouthpiece at the other end of the main bore also 
affects the frequency of some of the modes. The mouthpiece consists of a 
cup-shaped cavity which communicates via a small aperture with a short 
conical pipe. The mouthpiece has a resonant frequency associated with it, 
which is generally in the region of 850 Hz for a trumpet, which is otherwise 
known as the “popping frequency” since it can be heard by slapping its lip 
contact end on the flattened palm of one hand (Benade, 1976). The addition 
of a mouthpiece effectively extends the overall pipe length by an increas-
ing amount. Benade notes that this effect “is a steady increase nearly to the 
top of the instrument’s playing range,” and that a mouthpiece with a “lower 
popping frequency will show a greater total change in effective length as one 
goes up in frequency” (Benade, 1976, p. 416). This pipe length extension 
caused by adding a mouthpiece therefore has a greater downwards frequency 
shifting effect on the higher compared with the lower modes.

In a complete brass instrument, it is possible through the use of an appro-
priately shaped bell, mouthpiece and mouthpipe to construct an instrument 
whose modes are frequency shifted from the odd only modes of a stopped 
cylindrical pipe to being very close to a complete harmonic series. In prac-
tice, the result is a harmonic series where all modes are within a few per cent 
of being integer multiples of a common lower-frequency value except for the 
first mode itself, which is well below that lower-frequency value common to 
the higher modes and therefore it is not harmonically related to them. The 
effects of the addition of the bell and mouthpiece/mouthpipe on the individual  
lowest six modes are broadly as summarized in Figure 4.27. Here the odd-
numbered modal frequencies of the stopped cylindrical pipe are denoted as 
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integer multiples of frequency “f,” and the resulting brass instrument modal 
frequencies are shown as multiples of another frequency “F.”

The second mode is therefore the lowest musically usable mode avail-
able in a brass instrument (note that the lowest mode does not correspond 
with 1F). Overblowing from the second mode to the third mode results in 
a pitch jump of a perfect fifth, or seven semitones. The addition of three 
valves to brass instruments (except the trombone), each of which adds a 
different length of tubing when it is depressed, enables six semitones to be 
played, sufficient to progress from the first to the second mode. Assuming 
this is from the written notes C4 to G4, the six required semitones are: 
C#4, D4, D#4, E4, F4, and F#4.

Figure 4.28 shows how this is achieved. The center (or second) valve 
lowers the pitch by one semitone, the first valve (nearest the mouthpiece) 
by two semitones, and the third valve by three semitones. Combinations of 
these valves therefore, in principle, enable the required six semitones to be 
played. It may at first sight seem odd that there are two valve fingerings for 
a lowering of three semitones (third valve alone or first and second valves 
together) as shown in the figure. This relates to a significant problem in 
relation to the use of valves for this purpose which is described below.

Assuming equal tempered tuning for the purposes of this section, it was 
shown in Chapter 3 that the frequency ratio for one semitone (1/12 of one 
octave) is:

 r  2 1 059512 .  

The decrease in frequency required to lower a note by one semitone 
is therefore 5.95%, and this is also the factor by which a pipe should be 
lengthened by the second valve on a brass instrument. Depressing the first 
valve only should lower the f0 and hence lengthen the pipe by 12.25% since 

Stopped cylindrical pipe modes

Brass instrument modes
Mouthpiece/mouthpipe: –m–    Bell: –b–
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fIgure 4.27
Brass instrument mode 
frequency modification to 
stopped cylindrical pipe by 
the addition of mouthpiece/
mouthpipe and bell.
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the frequency ratio for two semitones is the square of that for one semi-
tone (1.05952  1.1225). Depressing the first and second valve together 
will lengthen the pipe by 18.2% (12.25%  5.95%), which is not sufficient 
for three semitones since this requires the pipe to be lengthened by 18.9% 
(1.05953  1.1893). The player must lip notes using this valve combina-
tion down in pitch. The third valve is also set nominally to lower the f0 by 
three semitones but, because of the requirement to add a larger length the 
further down that is progressed, it is set to operate with the first valve to 
produce an accurate lowering of five semitones. Five semitones is equiva-
lent to 33.51% (1.05955  1.3351), and subtracting the lowering produced 
by the first valve gives the extra pipe length required from the third valve as 
21.26% (33.5112.25%), which is rather more than both the 18.2% avail-
able from the combination of the first and second valves and the 18.9% 
required for an accurate three-semitone lowering.

In practice, on a trumpet, for example, the third valve is often fitted 
with a tuning slide so that the player can alter the added pipe length while 
playing. No such issues arise for the trombonist, who can alter the slide 
position accurately to ensure the appropriate additional pipe lengths are 
added for accurate tuning of the intervals.

Figure 4.29 shows waveforms and spectra for the note C3 played on a 
trombone and a tuba. The harmonics in the spectrum of the trombone extend 
far higher in frequency than those of the tuba. This effect can be seen by com-
paring the shape of their waveforms where the trombone has many more 
oscillations during each cycle than the tuba. In these examples, the first three 
harmonics dominate the spectrum of the tuba in terms of amplitude and eight 
harmonics can be readily seen, whereas the fifth harmonic dominates the spec-
trum of the trombone, and harmonics up to about the 29th can be identified.

Semitones

1st valve
(–2 semitones)

2nd valve
(–1 semitone)

3rd valve
(–3 semitones)

–1 –2 –3 –3 –4 –5 –6

fIgure 4.28 The basic valve combinations used on brass instruments to enable 6 semitones to 
be fingered. (Note: Black circle  valve depressed; white circle  valve not depressed; on a trumpet, 
first valve is nearest mouthpiece, second in the middle and third nearest the bell.)
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4.4 perCuSSION INStruMeNtS

The percussion family is an important body of instruments which can also 
be described acoustically in terms of the “black box” model. Humans have 
always struck objects, whether to draw attention to or to imbue others and 
themselves with rhythm. Rhythm is basic to all forms of music in all cul-
tures and members of the percussion family are often used to support it. 
Further reading in this area can be found in Benade (1976); Rossing (2001); 
Hall (2001); and Fletcher and Rossing (1999).

4.4.1 Sound source in percussion instruments
The sound source in percussion instruments usually involves some kind 
of striking. This is most often by means of a stick or mallet which may 
be made of wood or metal and may have a plastic or cloth-covered, pad-
ded striking end. However, this is not the case in a cymbal crash when two 
cymbals are struck together. Such a sound source is known as an “impulse.” 
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The spectrum of a single impulse is continuous since it is non-periodic (i.e., 
it never repeats), and all frequency components are present. Therefore any 
instrument which is struck is excited by an acoustic sound source of short 
duration in which all frequencies are present. All modes that the instrument 
can support will be excited, and each will respond in the same way that the 
plucked reed vibrates as illustrated in Figure 4.21. The narrower the fre-
quency band of the mode, the longer it will “ring” for. (One useful analogy 
is the impulse provided if a parent pushes a child on a swing just once. The 
child will swing back and forth at the natural frequency of the swing and 
child, and the amplitude of the swinging will gradually diminish. A graph 
of swing position against time would be similar to the time response for the 
hard reed plotted in Figure 4.21.)

4.4.2 Sound modifiers in percussion instruments
Percussion instruments are characterized acoustically by the modes of vibra-
tion they are able to support, and the position of the strike point with respect 
to the node and antinode points of each mode (e.g., see the discussion on 
plucked and struck strings earlier in this chapter). Percussion instruments can 
be considered in three classes: those that make use of bars (e.g., xylophone, 
glockenspiel, Celeste, triangle); membranes (e.g., drums); or plates (e.g., cym-
bals). In each case, the natural mode frequencies are not harmonically related, 
with the exception of longitudinal modes excited in a bar which is stimulated 
by stroking with a cloth or glove coated with rosin whose mode frequencies 
are given by Equation 1.35 if the bar is free to move (unfixed) at both ends, 
and equation 1.36 if it is supported at one end and free at the other.

Transverse modes are excited in bars that are struck, as, for example, 
when playing a xylophone or triangle, and these are not harmonically 
related. The following equations (adapted from Fletcher and Rossing, 1999) 
relate the frequencies of higher modes to that of the first mode.

For transverse modes in a bar resting on supports (e.g., glockenspiel, 
xylophone):
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For transverse modes in a bar clamped at one end (e.g., celeste):
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The frequencies of the transverse modes in a bar are inversely propor-
tional to the square of the length of the bar:
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whereas those of the longitudinal modes are inversely proportional to the 
length (from Equations 1.35 and 1.36):
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Therefore halving the length of a bar will raise its transverse mode frequen-
cies by a factor of four, or two octaves, whereas the longitudinal modes 
will be raised by a factor of two, or one octave. The transverse mode fre-
quencies vary as the square of the mode number, apart from the second 
mode of the clamped bar (see Equation 4.13) whose factor (2.988) is very 
close to (3). Table 4.1 shows the frequencies of the first five modes relative 
to the frequency of the first mode as a ratio and in equal tempered semi-
tones (Appendix 2 gives a frequency ratio to semitone conversion equation) 
for a bar resting on supports (Equation 4.12) and one clamped at one end 
(Equation 4.13).

table 4.1   Frequency ratios (Equations 4.20 and 4.21) and semitone spacings 
(see Appendix 2) of the first five theoretical modes relative to the first 
mode for a bar clamped at one end and a bar resting on supports

transverse 
mode of bar

Bar resting on supports Bar clamped at one end

ratio Semitones ratio Semitones

1 (rel. 1st mode)  1.000 0.00  1.000  0.00

2 (rel. 1st mode)  2.758 17.56  6.267 31.77

3 (rel. 1st mode)  5.405 29.21 17.536 49.58

4 (rel. 1st mode)  8.934 37.91 34.371 61.23

5 (rel. 1st mode) 13.346 44.86 56.817 69.93
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The first three modes of a bar resting on supports and a bar clamped at 
one end are shown in the upper and lower parts respectively of Figure 4.30 
along with the appropriate frequency ratio to the first mode (see Table 4.1). 
Note that the clamped modes are those found for a tuning fork which can 
be considered as a pair of bars clamped at one end.

None of the higher modes is a whole number of equal tempered semi-
tones above the fundamental and none forms an interval available within 
a musical scale. The intervals between the modes are very wide compared 
with harmonic spacing as they are essentially related by the square of odd 
integers (i.e., 32, 52, 72, 92, ...). The relative excitation strength of each 
mode is in part governed by the point at which the bar is hit.

Benade (1976) notes that often the measured frequencies of the vibrating 
modes of instruments which use bars differ somewhat from the theoretical 
modes (in Table 4.1) due to the effect of “mounting hole(s) drilled in the actual 
bar and the grinding away of the underside of the center of the bar which is 
done for tuning purposes.”

In order that notes can be played which have a clearly perceived pitch on 
percussion instruments such as the xylophone, marimba, and vibraphone 
(with playing ranges from C5 (523 Hz) to C8 (4186 Hz), A2 (110 Hz) to C7 
(2093 Hz), and F3 (175 Hz) to F6 (1397 Hz) respectively), the bars are shaped 
with an arch on their undersides to tune the modes to be close to harmon-
ics of the first mode. In the marimba and vibraphone the second mode is 
tuned to two octaves above the first mode, and in the xylophone it is tuned 
to a twelfth above the first mode. These instruments have resonators, which 
consist of a tube closed at one end, mounted under each bar. The first mode 
of these resonators is tuned to the f0 of the bar to enhance its loudness, and 
therefore the length of the resonator is a quarter of the wave-
length of f0 (see Equation 1.36).

In percussion instruments which make use of membranes 
and plates, the modal patterns which can be adopted by the 
membranes or plates themselves govern the frequencies of  
the modes that are supported. The membrane in a drum and 
the plate of a cymbal are circular, and the first 10 mode patterns 
which they can adopt in terms of where displacement nodes and 
antinodes can occur are shown in the upper part of Figure 4.31.  
Displacement nodes occur in circles and/or diametrically across 
and these are shown in the figure. They are identified by the 
numbers given in brackets as follows: (number of diamet-
ric modes, number of circular modes). The drum membrane 
always has at least one circular mode where there is a displace-
ment node, which is the clamped edge.

1.000

2.758

5.405

1.000

6.267

17.536

fIgure 4.30 The first three modes of a 
free bar (upper) and a clamped bar (lower).
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The frequencies of the modes can be calculated mathematically, but 
the result is rather more complicated than for the bars. Table 4.2 gives the 
frequencies of each mode relative to the first mode (Fletcher and Rossing, 
1999) and the equivalent number of semitones (calculated using the equa-
tion given in Appendix 3). As with the bars, none of the modes is an exact 
number of equal tempered semitones apart or in an integer ratio and there-
fore they are not harmonically related.

Drums consist of membranes or “drum heads,” which are either made 
of a synthetic material or animal skin, stretched across a supporting frame 
which is usually round. A small hand-drum, such as the tabor which is 
commonly used in early music, consists of a cylindrical ring with the drum 
head stretched across one end, the other end being open. This construction 
is also used for the tambourine, which is like a tabor but with small cym-
bal-like disks, or “jingles,” mounted in pairs on pins in slots around the 
cylindrical ring. These rattle together when the instrument is mechanically 
excited, either by striking it with the knuckles or fingertips to set the jingles 
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fIgure 4.31
The first ten modes of a 
stretched drum membrane 
(upper) and the first six 
modes of a plate cymbal 
(lower). The mode numbers 
are given in brackets as 
(number of diametric 
nodes, number of circular 
nodes). The plus and minus 
signs show the relative 
phasing of the vibration 
of different parts of the 
structure within each mode. 
(Adapted from Fletcher and 
Rossing, 1999.)
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ringing briefly, or by rubbing a thumb around the head near the edge to 
set the jingles ringing continuously. Larger drums exist which have a single 
head stretched over a long cylinder, such as congas and bongos, and these 
are usually struck with the player’s hands.

The drums found in a drum kit are the bass drum, snare drum and two or 
more tom-toms of different sizes. These, along with the orchestral bass drum, 
have two drum heads—one mounted on each side of their cylindrical ring. 
Bass and snare drums are set up so as to be essentially non-pitched by setting 
a different tension on each of the drum heads, and therefore spreading the 
non-harmonic modes produced by the two heads widely in frequency. When 
they are struck the result is not pitch specific, and therefore they can be used 
to provide rhythm for music in any key. The snare drum (or “side drum” in 
marching bands) has a set of metal wires stretched across its lower head (or 
“snare head”), which vibrate against the snare head when the drum’s upper 
head or “batter head” is struck. The snares can be dropped from the snare 
head by means of a lever to allow the drum to be used without the vibrating 
snare. Tom-toms on the other hand are often tuned so as to provide a more 
definite sense of pitch by matching more closely the tuning of the upper and 
lower heads on each drum. They are often used in fills to give rising or, more 
commonly, falling groups of multiple strikes during a fill.

table 4.2  Modes and frequency ratios (from Fletcher and Rossing, 1999) as well as semitone 
(ST) distances (see Appendix 3 for details of converting frequency ratios to semitones) 
between each of the first 10 theoretical modes relative to the first mode for an ideal circular 
membrane but without a bowl (left), a circular membrane mounted on a bowl as a timpani 
(center) and an ideal circular plate (right). The asterisks indicate those modes that tend not 
to be excited strongly when a timpani is struck at the normal playing position (see text)

Circular membrane Circular plate

Mode Ideal ratio (St) timpani ratio (St) Mode Cymbal ratio (St)

(0,1) 1.000 (0.0) 1.70 (9.19)* (2,0) 1.00 (0.0)

(1,1) 1.59 (8.1) 2.00 (12.0) (3,0) 1.94 (11.5)

(2,1) 2.14 (13.1) 3.00 (19.0) (4,0) 3.42 (21.3)

(0,2) 2.30 (14.4) 3.36 (21.0)* (5,0) 5.08 (28.1)

(3,1) 2.65 (16.9) 4.00 (24.0) (6,0) 6.90 (22.4)

(1,2) 2.92 (18.6) 4.18 (24.7)* (2,1) 8.63 (37.3)

(4,1) 3.16 (19.9) 4.98 (27.8) – –

(2,2) 3.50 (21.7) 5.34 (29.0)* – –

(0,3) 3.60 (22.2) 5.59 (29.8)* – –

(5,1) 3.65 (22.4) 5.96 (30.9) – –
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While the tom–tom can produce a more definite sense of pitch, it is not 
the clearest that can be achieved from a drum. The main orchestral drum 
is the kettledrum, and there will usually be between two and five kettle-
drums used in today’s orchestras with a single player devoted to playing 
them. Such a group of kettledrums is referred to as “timpani” (the Oxford 
Companion to Music notes that “tympani” is a common misspelling of 
“timpani”); therefore a single kettledrum would be a “timpano.” As the 
music modulates from one key to another, composers can continue to make 
use of the timpani in the new key since they can be retuned rapidly.

A kettledrum has a single membrane which is stretched over a metal 
bowl (or kettle) that is suspended on a supporting frame. Absolute tuning 
of a kettledrum head is set by means of adjusting screws (usually eight) 
around its rim, to enable it to be tuned to the appropriate absolute pitch 
reference. During a performance, its tuning can be changed in semitone 
steps by means of a lever tensioning system operated by a pedal, which 
typically enables a pitch variation over five semitones. The head tension 
varies as the lever is moved from note to note, and, if the kettledrum is 
struck immediately prior to the lever being moved, a rising (or falling) pitch 
is heard as a glide or glissando. This is sometimes used for musical effect.

The modes produced when a kettledrum is struck are the same shape as 
those given in Figure 4.31, but their mode frequencies are different from those 
of an unmounted head (shown as “ideal” in Table 4.2), because of the effect of 
the air in the bowl over which the head is stretched and the position at which 
it is struck. Hall (2001) describes this as follows: “When sections of the head 
move into and out of the bowl, other sections move in the opposite direction 
(out of and into the bowl respectively).” These are marked in Figure 4.31 with 
plus and minus signs. The (0,1) mode is an exception to this, and it is marked 
with “/” since it involves the whole head moving either into or out of the 
bowl, as it attempts to compress and rarefy the trapped air respectively.

In practice, this mode is damped by means of a vent hole in the bowl 
which allows air to move out of and into the bowl in response to this mode, 
thereby absorbing its energy. This vent hole has no such effect on the other 
modes since they all involve compensating movements by sections of the head 
as indicated by the equal numbers of plus and minus signs in Figure 4.31.  
Hall notes that the usual strike position for a kettledrum is half to three quar-
ters of the distance from the center to the rim, and that this is reasonably 
close to the circular node positions for all modes that have two or three circu-
lar nodes: {(0,2), (1,2), (2,2) and (0,3)} in Figure 4.31. These modes will not 
be greatly excited since they will be unable to realize strong circular nodes due 
to the strike producing a significant velocity in their circular nodal regions (see 
Section 4.2.1 on modes not excited when a string is plucked).
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In summary, only modes with one circular node (the one they must all 
have at the rim) except the first mode (0,1) contribute significantly to the 
sound produced by a kettledrum, bearing in mind that this depends on the 
strike position being between a half and three quarters of the distance from 
the drum center to the rim. The presence of the bowl lowers the frequen-
cies of these contributing modes since the head is effectively made more 
massive due to the presence of the air trapped in the bowl which loads it. 
The extent of the pitch flattening of the modes is dependent on the shape 
of the bowl itself, and the aim for the kettledrum maker is to achieve modal 
frequencies for the modes with one circular mode that are close to being 
members of the same harmonic series.

Table 4.2 shows the frequency ratios for the lowest 10 modes of an ideal 
supported membrane (these are the modes shown in Figure 4.31), and 
those for a kettledrum (adapted from Rossing, 2001). The modes that do 
not contribute significantly to the overall output from a kettledrum {(0,1), 
(0,2), (1,2), (2,2) and (0,3)} are indicated with an asterisk. It can be seen 
that the frequency ratios of the remaining modes are very close to being the 
second, third, fourth, fifth and sixth harmonics—making the kettledrum 
an orchestral instrument whose output has a “missing fundamental”—but 
this does not affect our ability to perceive its pitch as being associated with 
the missing fundamental as discussed in Section 3.2.1. A kettledrum then 
will output a strongly pitched note, provided it is struck in a position that 
tends not to favor those modes marked with an asterisk in Table 4.2.

The player does then have some control over the output spectrum from a 
kettledrum depending on where it is struck. Note that a strike in the center 
is not very satisfactory in terms of the resulting sound because almost all of 
the first 10 modes have nodes in the center, and therefore they will tend not 
to be excited. Another form of control is from the use of different mallets. 
Small hard mallets produce a large excitation that is focused over a small 
area and therefore can excite a number of modes extending to high frequen-
cies, while the excitation from large soft mallets is somewhat muffled, duller 
and less strong due to it being spread over a larger area, thereby tending to 
excite more strongly the lower frequency modes. This muffling effect was 
produced on early kettledrums by placing a cloth over the drum head. The 
normal orchestral playing effects for timpani are the roll and repeated notes.

The lower part of Figure 4.31 shows the first six modes of a cymbal 
(Rossing, 2001). It should be noted that unlike the stretched membrane a 
metal plate is not supported around its outer edge, and therefore the low-fre-
quency modes have no circular nodes. Rossing notes that the modes above 
the sixth tend to be combinations of more than one individual mode, and 
are therefore rather difficult to pin down in terms of their modal patterns,  
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but they do tend to have at least one circular node. The mode frequencies 
do not approximate closely to a harmonic series and therefore no strong 
pitch is produced by cymbals. Cymbals are struck in a variety of ways, 
either as a pair of orchestral crash cymbals or as a “hi-hat” in a drum kit or 
with hard or soft beaters. Crash and hi-hat cymbals excite all modes since 
all modes have antinodes around the edges of the cymbals. The use of beat-
ers gives the player some control of the output spectrum in the same way 
that is described for a kettledrum above.

4.5 the SpeAkINg ANd SINgINg VOICe

The singing voice is probably the most versatile of all musical instruments. 
Anyone who can speak is capable of singing, but we are not all destined to 
be opera or pop stars. While considerable mystique surrounds the work of 
some singing teachers and how they achieve their results, the acoustics of 
the singing voice is now established as a research topic in its own right. 
Issues such as the following are being considered:

n the differences between adult male and adult female voices;
n the effects of singing training;
n the development of pitching skills by children;
n “tone deafness;”
n the acoustic nature of different singing styles;
n the effect of different acoustics on choral singing;
n electronic synthesis of the singing voice;
n choral blend in choirs;
n solo voice.

Knowledge of the acoustics of the singing and speaking voice can be help-
ful to music technologists when they are developing synthetic sounds since 
humans are remarkably good at vocalizing the sound they desire. In such 
cases, knowledge of the acoustics of the singing and speaking voice can 
help in the development of synthesis strategies. This section discusses the 
human singing voice in terms of the input/system/output model and points 
to some of the key differences between the speaking and singing voice. 
The discussion presented in this section is necessarily brief. A number of 
texts are available which consider the acoustics of the speaking voice (e.g., 
Fant, 1960; Fry, 1979; Borden and Harris, 1980; Baken, 1987; Baken and 
Danilof, 1991; Kent and Read, 1992; Howard, 1998; Howard and Angus, 
1998), and the acoustics of the singing voice (e.g., Benade, 1976; Sundberg, 
1987; Bunch, 1993; Dejonckere et al., 1995; Howard, 1999).
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4.5.1 Sound source in singing
The sound source in singing is the acoustic result of the vocal folds vibrat-
ing in the larynx which is sustained by air flowing from the lungs. The 
sound modifiers in singing are the spaces between the larynx and the lips 
and nostrils, known as the “vocal tract,” which can be changed in shape 
and size by moving the “articulators,” for example the jaw, tongue and lips 
(see Figure 4.32). As we sing or speak, the shape of the vocal tract is contin-
ually changing to produce different sounds. The soft palate acts as a valve 
to shut off and open the nasal cavity (nose) from the airstream.

Vocal fold vibration in a healthy larynx is a cyclic sequence in which the 
vocal folds close and open regularly when a note is being sung. Thus the 
vocal folds of a soprano singing A4 (f0  440.0 Hz) 
will complete this vocal fold closing and opening 
sequence 440 times a second. Singers have two 
methods by which they can change the f0 of vocal 
fold vibration: they alter the stiffness of the folds 
themselves by changing the tension of the fold mus-
cle tissue, or by altering the vibrating mass by sup-
porting an equal portion of each fold in an immobile 
position. Adjustments of the physical properties of 
the folds themselves allow many trained singers to 
sing over a pitch range of well over two octaves.

The vocal folds vibrate as a result of the Bernoulli 
effect in much the same way as the lips of a brass 
player. A consequence of this is that the folds close 
more rapidly than they open. An acoustic pressure 
pulse is generated at each instant when the vocal 
folds snap together, rather like a hand 
clap. As these closures occur regularly 
during singing, the acoustic input to the 
vocal tract consists of a regular series 
of pressure pulses (see Figure 4.33), the 
note being sung depending on the num-
ber per second. The pressure pulses are 
shown as negative-going in the figure 
since the rapid closure of the vocal folds 
suddenly causes the airflow from the 
lungs to stop, resulting in a pressure 
drop immediately above the vocal folds. 
The time between each pulse is the  
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fIgure 4.32 A cross-section of the vocal tract.
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fundamental period. Benade (1976) notes though that the analogy between the 
lip vibration of brass players and vocal fold vibration speakers and singers should 
not be taken too far because the vocal folds can vibrate with little influence 
being exerted by the presence of the vocal tract, whereas the brass player’s lip 
vibration is very strongly influenced by the presence of the instrument’s pipe.

Figure 4.34 shows a schematic vocal fold vibration sequence as if viewed 
from the front associated with an idealized airflow waveform between the 
vibrating vocal folds. This is referred to as “glottal” airflow since the space 
between the vocal folds is known as the “glottis.” Three key phases of the 
vibration cycle are usefully identified: closed phase (vocal folds together), 
opening phase (vocal folds parting), and closing phase (vocal folds com-
ing together). The opening and closing phases are often referred to as the 
“open phase” as shown in the figure, because this is the time during which 
air flows. It should also be noted that airflow is not necessarily zero dur-
ing the closed phase since there are vocal fold vibration configurations  
for which the vocal folds do not come together over their whole length  
(e.g., Sundberg, 1987; Howard, 1998, 1999).

The nature of vocal fold vibration changes with voice training, whether 
for oratory, acting or singing. The time for which the vocal folds are in  
contact in each cycle, known as “larynx closed quotient” or “CQ,” has  
been investigated as a possible means by which trained adult male (Howard 
et al., 1990) and female (Howard, 1995) singers can be helped in producing 
a more efficient acoustic output. Experimental measurements on trained 
and untrained singers suggest that CQ is higher at all pitches for trained 
adult males, and that it tends to increase with pitch for trained adult 
females in a patterned manner.

Howard et al. suggest that the higher CQ provides the potential for a 
more efficient voice output by three means: (i) the time in each cycle during  
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which there is an acoustic path via the open vocal folds to the lungs, where 
sound is essentially completely absorbed, is reduced, (ii) longer notes can 
be sustained since less air is lost via the open vocal folds in each cycle, and 
(iii) the voice quality is less breathy since less air flows via the open vocal 
folds in each cycle.

The frequency spectrum of the regular pressure pulses generated by the 
vibrating vocal folds during speech and singing consists of all harmonics 
with an amplitude change on average of 12 dB per octave rise in frequency 
(see the illustration on the right in Figure 4.33). Thus for every doubling in 
frequency, equivalent to an increase of one octave, the amplitude reduces 
by 12 dB. The amplitudes of the first, second, fourth and eighth harmonics 
(which are separated by octaves) in the figure illustrate this effect.

The shape of the acoustic excitation spectrum remains essentially con-
stant while singing, although the amplitude change of 12 dB per octave is 
varied for artistic effect and singing style and to aid voice projection by profes- 
sional singers (e.g., Sundberg, 1987). The spacing between the harmonics 
will change as different notes are sung; Figure 4.38 shows three input spec-
tra for sung notes an octave apart. Trained singers, particularly those with 
Western operatic voices, exhibit an effect known as “vibrato” in which their 
f0 is varied at a rate of approximately 5.5–7.5 Hz with a range of between 
0.5 and 2 semitones (Dejonckere et al., 1995).

4.5.2 Sound modifiers in singing
The regular series of pulses from the vibrating vocal folds are modified 
by the acoustic properties of the vocal tract (see Figure 4.32). In acoustic 
terms, the vocal tract can be considered as a stopped tube (closed at the lar-
ynx, which operates as a flow-controlled reed, and open at the lips) which 
is approximately 17.5 cm in length for an adult male. When the vowel at 
the end of announcer is produced, the vocal tract is set to what is referred 
to as a “neutral” position, in which the articulators are relaxed, and the soft  
palate (see Figure 4.32) is raised to cut off the nose; the vowel is termed 
“non-nasalized.” The neutral vocal tract approximates quite closely to a 
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tube of constant diameter throughout its length and therefore the equation 
governing modal frequencies in a cylindrical stopped pipe can be used to 
find the vocal tract standing wave mode frequencies for this vowel.

Example 4.3 gives the frequencies for the neutral vowel, and these are 
often rounded to 500 Hz, 1500 Hz and 2500 Hz for convenience. When 
considering the acoustics of speech and singing, the standing wave modes 
are generally referred to as “formants.” Idealized frequency response curves 
for a vocal tract set to produce the vowels in the words fast, feed and 
food are shown in Figure 4.35 and the center frequency of each formant 
is labeled starting with “F1” or “first formant” for the peak that is lowest 
in frequency, continuing with “F2” (second formant) and “F3” (third for-
mant) as shown in the figure. The formants are acoustic resonances of the 
vocal tract itself resulting from the various dimensions of the vocal tract 
spaces. These are modified during speech and singing by movements of the 
articulators.

When considering the different sounds produced during speech, usually 
just the first, second and third formants are considered since these are the 
only formants whose frequencies tend to vary. Six or seven formants can 
often be identified in the laboratory and the higher formants are thought to 
contribute to the individual identity of a speaking or singing voice. However, 
in singing, important contributions to the overall projection of sound are 
believed to be made by formants higher than the third.

exAMple 4.3

Calculate the first three mode frequencies of the neutral adult male vocal tract. 
(take the velocity of sound in air as 344 ms1.)
The vocal tract length is 17.5 cm, or 0.175 m.

From Equation 4.9, the fundamental or first mode:
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From Equation 4.10, the higher mode frequencies are:
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where 1,  2,  3,  4,n …  

Thus the second mode frequency (n  2) is: 3  491.4  1474 Hz
and the third mode frequency (n  3) is: 5  491.4  2457 Hz.
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In order to produce different sounds, the shape of the vocal tract is 
altered by means of the articulators to change its acoustic properties. The 
perturbation theory principles explored in the context of woodwind reed 
instruments (see Figure 4.23) can be employed here also (Kent and Read, 
1992). Figure 4.36 shows the velocity nodes and antinode positions for 
the first three formants of the vocal tract during a neutral non-nasalized 
vowel, which can be confirmed with reference to the upper-right-hand part 
of Figure 4.23. Following the same line of reasoning as that presented in 
the context of Figure 4.23, the effect of constrictions (and therefore enlarge-
ments) on the first three formants of the vocal tract can be predicted as 
shown in Figure 4.37. For example, all formants have a volume velocity 
antinode at the lips, and a lip constriction therefore lowers the frequencies 
of all formants. (It should be noted that there are two other means of low-
ering all formant frequencies by means of vocal tract 
lengthening either by protruding the lip or by lower-
ing the larynx.)

A commonly referenced set of average formant 
frequency values for men, women and children for a 
number of vowels, taken from Peterson and Barney 
(1952), is shown in Table 4.3. Formant frequency val-
ues for these vowels can be predicted with reference 
to their articulation. For example, the vowel in beat 
has a constriction towards the front of the tongue 
in the region of both N2 and N3 (see Figure 4.36),  
and reference to Figure 4.37 suggests that F1 is low-
ered in frequency and F2 and F3 are raised from the 
values one would expect for the neutral vowel. The 
vowel in part, on the other hand, has a significant 
constriction in the region of both A2 and A3 (see 
Figure 4.36) resulting in a raising of F1, and a lower-
ing of both F2 and F3 from their neutral vowel val-
ues. The vowel in boot has a constriction at the lips, 

N3
N2

A1, 2, 3

N3A3

A3

A2

Larynx
N1, 2, 3

fIgure 4.36 Velocity nodes and antinode positions 
for the first three modes (or formants: F1, F2, F3) of the 
vocal tract during a neutral non-nasalized vowel.

Larynx
F1

Larynx Larynx
F2 F3

fIgure 4.37
Formant frequency 
modification with position of 
vocal tract of constriction.
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which are also rounded so as to extend the length of the vocal tract, and 
thus all formant frequencies are lowered from their neutral vowel values. 
These changes can be confirmed from Table 4.3.

The input/system/output model for singing consists of the acoustic 
excitation due to vocal fold vibration (input) and the vocal tract response 
(system) to give the output. These are usually considered in terms of their 
spectra, and both the input and system change with time during singing. 
Figure 4.38 shows the model for the vowel in fast sung on three different 
notes. This is to allow one of the main effects of singing at different pitches 
to be illustrated.

The input in each case is the acoustic spectrum resulting from vocal 
fold vibration (see Figure 4.33). The output is the result of the response of 
the vocal tract for the vowel in fast acting on the input vocal fold vibration.  
The effect of this is to multiply the amplitude of each harmonic of the input 
by the response of the vocal tract at that frequency. This effectively imparts 
the formant peaks of the vocal tract response curve onto the harmonics of the 
input spectrum. In this example, there are three formant peaks shown, and it 
can be seen that in the cases of the lower two notes the formant structure can 
be readily seen in the output, but that in the case of the highest note the for-
mant peaks cannot be identified in the output spectrum because the harmon-
ics of the input are too far apart to represent clearly the formant structure.

The representation of the formant structure in the output spectrum is 
important if the listener is to identify different vowels. Figure 4.38 suggests 
that somewhere between the G above middle C and the G an octave above, 

table 4.3  Average formant frequencies in Hz for men, women and children 
for a selection of vowels. (From Peterson and Barney, 1952.)

Vowel in Men Women Children

f1 f2 f3 f1 f2 f3 f1 f2 f3

beat 270 2300 3000 300 2800 3300  370370 3200 3700

bit 400 2000 2550 430 2500 3100  530530 2750 3600

bet 530 1850 2500 600 2350 3000  700700 2600 3550

bat 660 1700 2400 860 2050 2850 1000 2300 3300

part 730 1100 2450 850 1200 2800 1030 1350 3200

pot 570  850 2400 590  900900 2700  680680 1050 3200

boot 440 1000 2250 470 1150 2700  560560 1400 3300

book 300  850850 2250 370  950950 2650  430430 1150 3250

but 640 1200 2400 760 1400 2800  850850 1600 3350

pert 490 1350 1700 500 1650 1950  560560 1650 2150
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vowel identification will become increasingly difficult. This is readily tested 
by asking a soprano to sing different vowels on mid and top G, as shown in 
the figure, and listening to the result. In fact, when singing these higher notes, 
professional sopranos adopt vocal tract shapes which place the lower formants 
over individual harmonics of the excitation so that they are transmitted via 
the vocal tract with the greatest amplitude. In this way, sopranos can pro-
duce sounds of high intensity which will project well. This effect is used from 
approximately the C above middle C where the vocal tract is, in effect, being 
“tuned in” to each individual note sung, but at the expense of vowel clarity.

This tuning-in effect is not something that tenors need to do since the 
ratio between the formant frequencies and the f0 of the tenor’s range is 
higher than that for sopranos. However, all singers who do not use ampli-
fication need to project above accompaniment, particularly when this is a 
full orchestra and the performance is in a large auditorium. The way in 
which professional opera singers achieve this can be seen with reference to 
Figure 4.39, which shows idealized spectra for the following:

n a professional opera singer speaking the text of an operatic aria;
n the orchestra playing the accompaniment to the aria; and
n the aria sung by the singer with the orchestral accompaniment.

fIgure 4.38
Singing voice input/system/
output model idealized for 
the vowel in fast sung on 
three notes an octave apart.
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It should be noted that the amplitude levels cannot be directly compared 
between (a) and (b) in the figure (i.e. the singer does not speak as loudly 
as the orchestral accompaniment!) since they have been normalized for 
comparison.

The idealized spectrum for the text read alone has the same general 
shape as that for the orchestra playing alone. When the professional singer 
sings the aria with orchestral accompaniment, it can be seen that this com-
bined response curve has a shape similar to both the speech and orches-
tral accompaniment at low frequencies, but with an additional broad peak 
between approximately 2.5 kHz and 4 kHz and centered at about 3 kHz. 
This peak relates to the acoustic output from the singer when singing 
but not when speaking, since it is absent for the read text and also in the 
orchestral accompaniment alone.

This peak has similar characteristics to the formants in the vocal tract 
response, and for this reason it is known as the “singer’s formant.” The 
presence of energy in this peak enables the singer to be heard above an 
accompanying orchestra because it is a section of the frequency spectrum 
in which the singer’s output prevails. This is what gives the professional 
singing voice its characteristic “ring,” and it is believed to be the result of 
lowering the larynx and widening the pharynx (see Figure 4.32) which is 
adopted by trained Western operatic singers. (The lower plot in Figure 5.5 
in Chapter 5 is an analysis of a CD recording of a professional tenor whose 
singer’s formant is very much in evidence.)

Singing teachers set out to achieve these effects from pupils by suggest-
ing that pupils: “sing on the point of the yawn,” or “sing as if they have 
swallowed an apple which has stuck in their throat.” Sundberg (1987)  

Text alone Orchestra alone Singer and orchestra
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fIgure 4.39 Idealized spectra: (a) a singer speaking the text of an opera aria, (b) the orchestra 
playing the accompaniment to the aria, (c) the aria being sung with orchestral accompaniments  
(adapted from Sundberg, 1987).
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discusses the articulatory origin of the singer’s formant as follows: “it 
shows a strong dependence on the larynx tube,” concluding that: “it is nec-
essary, however, that the pharynx tube be lengthened and that the cross-
sectional area in the pharynx at the level of the larynx tube opening be 
more than six times the area of that opening.”

Professional singing is a complex task which extends the action of the 
instrument used for speech. It is salutary to note that the prime function 
of the vocal folds is to act as a valve to protect the lungs, and not to pro-
vide the sound source basic to human communication by means of speech 
and song.

4.5.3 tuning in a capella (unaccompanied) singing
Experienced singers are able to vary their intonation (sung pitch) to a very fine 
degree with respect either to the pitch of any accompanying instrument(s) or, if 
singing a capella (unaccompanied), to the pitches of the other singers. If sing-
ing with accompaniment that is being provided by a modern piano or pipe 
organ, then the tuning system will be equal tempered where all the semitones 
have a twelfth root of two frequency ratio (see Section 3.4.3).

When singing a capella though, there is no requirement to stick to equal 
tempered tuning and the possibility exists for singers to make use of the 
more consonant just intonation where the intervals are maximally conso-
nant (see Section 3.3.3), for example with perfect fifths (frequency ratio 3:2) 
and just major and minor thirds (frequency ratios 5:4 and 6:5 respectively). 
Bearing in mind that just intonation cannot be used to tune a 12-note 
chromatic musical keyboard if the octaves are to remain in the ratio 2:1 
(see Section 3.4), there could be musical situations where singing in just 
intonation causes the overall pitch to drift as a piece modulates through 
different keys and back to the starting key.

When singers take care with their listening, they will tend away from 
non-equal tempered tuning towards just tuning (Helmholtz, 1954; Bohrer, 
2002). A note sung by one singer has many harmonics whose relative 
amplitudes depend mainly on the setting of the sound modifiers and there-
fore the formant frequencies (see Section 4.5.2). When singing a chord, 
each harmonic of the note produced by one singer will have a nearest 
neighbor in the set of harmonics produced by another singer and the over-
all consonance of the result will depend heavily on the tuning accuracy.  
This is maximized when the fundamental frequencies are in an integer 
relationship and are harmonics of each other (see Section 3.3.3).

When a capella singing group adopts the non-equal temperament of just 
tuning, there is the question of whether the group’s pitch remains in-tune 
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or not if the music modulates away from the starting key and back again. In 
order to test this, some musical exercises were written by Howard (2007a)  
for a four-part (soprano, alto, tenor, bass or SATB) quartet which involved 
a four-part block chord movement that visited a large number (compared 
with the total number) of key chords. An example (Exercise 3) is shown in 
Figure 4.40 where the first and last chords are spaced by one octave. This 
exercise was one of a set that has been used to test the hypothesis that an 
SATB a capella vocal quartet will drift in pitch with key modulation if it 
tends to non-equal temperament.

The f0 of each of the four singers was measured when they sang the 
set of exercises by means of an electrolaryngograph (Abberton et al., 1989), 
which monitors vocal fold vibration directly. It makes use of two electrodes 
that are placed externally on the neck at the level of the larynx. A small 
high-frequency electrical current flows between the electrodes that is higher 
when the vocal folds are in contact than when they are apart. Note that 
acoustic measurements could not be used for f0 measurement in this exper-
iment for four singers since the recordings of each singer would be contam-
inated with the sound from the other singers.

The predicted pitch drift for just tuning of the chords in the exercise 
shown in Figure 4.40 is shown in Figure 4.41. It is based on the tuning of 
the just scale (see Section 3.4.2), and it can be seen that the prediction is 
for the pitch to drift a semitone flat (rather surprising for an exercise con-
sisting of only 13 chords!).

Figure 4.42 shows the measured results for a quartet where the aver-
age f0 for each sung note of each chord has been used (Howard, 2007a). 

As written on the score

As intended in performance

Exercise 3
DM Howard

fIgure 4.40 Tuning exercise to test for pitch drift in a capella singing (from Howard, 2007a).
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The measured results have a similar trend to that predicted, but with some 
variation in detail. The singers tend to drift flat more gently than the pre-
diction in the early stages then more rapidly afterwards, with individual 
singers generally moving together except for the bass whose pitch swings 
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are quite wide from chord to chord. The soprano and to some extent the 
alto in this quartet seem to be reluctant to allow the pitch to drift any 
further flat towards the end, almost maintaining it in the position it has 
reached somewhat against the efforts of the tenor and to some extent the 
bass to shift it further in line with the prediction. The overall measured 
pitch change is quite close to the semitone flat shift predicted. The experi-
ment was repeated with this quartet and another quartet sang the exercise 
twice (Howard, 2007b); the results in each case were similar.

This experiment confirms that singers do tend towards just tuning and 
that they maintain this overall tuning even at the expense of the overall pitch 
of the piece. Thus a dichotomy is presented to choral singers and their con-
ductors in terms of whether to keep the overall pitch in-tune and make some 
compromise to the tuning of individual chords or whether to allow the over-
all pitch to drift. Since equal temperament is at the heart of music heard by 
most people brought up within the Western musical tradition, its compro-
mised intervals in terms of their lack of consonance (all intervals except the 
octave are out-of-tune) form the basis of how musical intervals are learned.

It is therefore interesting to note the tendency of a capella choral sing-
ers towards the more consonant intervals of just intonation which are based 
on minimum beats, whilst at the same time noting the difficulty of tuning 
in equal temperament for which there is no readily available physical guide 
such as the absence of beating. Tuning notes in equal temperament is there-
fore likely to rely on memories of music from an early age rather than relying 
on any physical attributes of the relations between the notes themselves.

Howard (2007b) lists a number of basic points in relation to singing a 
capella in just intonation including:

n Singers do seem able to change their tuning, even subconsciously.
n Singers are not completely “locked” to equal temperament.
n Some consistency in approach has been demonstrated.
n Natural shift is towards just intonation.
n Present one note to start a piece—not an equal tempered chord.
n Have good listening skills.

In addition, he notes some points which tend to work against achieving 
just tuning including:

n choir practice with a piano or other keyboard tuned in equal 
temperament;

n listening to recorded and live music in equal temperament;
n working with choral conductors who are unaware of the implications;
n presenting an equal tempered chord to start a piece rather than one note;
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n being trained to remain in-tune;
n poor listening skills.

This aspect of a capella singing is one that many choral conductors are 
unaware of: knowledge of acoustics and psychoacoustics provides the basis 
for a proper understanding of its underlying causes. Conductors and direc-
tors should be aware of the effect and then they can make their own musical 
judgment in terms of what to do about pitch drift when it arises.
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5.1  What is timbre?

Pitch and loudness are two of three important descriptors of musical sounds 
commonly used by musicians, the other being “timbre.” Pitch relates to 
issues such as notes on a score, key, melody, harmony, tuning systems, and 
intonation in performance. Loudness relates to matters such as musical 
dynamics (e.g., pp, p, mp, mf, f, ff) and the balance between members of 
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a musical ensemble (e.g., between individual parts, choir and orchestra, or 
soloist and accompaniment). Timbre to sound quality descriptions include: 
mellow, rich, covered, open, dull, bright, dark, strident, grating, harsh, 
shrill, sonorous, somber, colorless and lackluster. Timbral descriptors are 
therefore used to indicate the perceived quality or tonal nature of a sound 
which can have a particular pitch and loudness also.

There is no subjective rating scale against which timbre judgments 
can be made, unlike pitch and loudness which can, on average, be reliably 
rated by listeners on scales from “high” to “low.” The commonly quoted 
American National Standards Institute formal definition of timbre reflects 
this: “Timbre is that attribute of auditory sensation in terms of which a 
listener can judge two sounds similarly presented and having the same 
loudness and pitch as being dissimilar” (ANSI, 1960). In other words, 
two sounds that are perceived as being different but which have the same 
perceived loudness and pitch differ by virtue of their timbre (consider the 
examples on track 62 of the accompanying CD). The timbre of a note is 
the aspect by which a listener recognizes the instrument which is playing a 
note when, for example, instruments play notes with the same pitch, loud-
ness and duration.

The definition given by Scholes (1970) encompasses some timbral 
descriptors: “Timbre means tone quality – coarse or smooth, ringing or 
more subtly penetrating, ‘scarlet’ like that of a trumpet, ‘rich brown’ like 
that of a cello, or ‘silver’ like that of the flute. These color analogies come 
naturally to every mind. . . . The one and only factor in sound production 
which conditions timbre is the presence or absence, or relative strength or 
weakness, of overtones.” (In Chapter 3, Table 3.1 gives the relationship 
between overtones and harmonics.) While his color analogies might not 
come naturally to every mind, Scholes’ later comments about the acoustic 
nature of sounds which have different timbres are a useful contribution to 
the acoustic discussion of the timbre of musical sounds.

When considering the notes played on pitched musical instruments, 
timbre relates to those aspects of the note which can be varied without 
affecting the pitch, duration or loudness of the note as a whole, such as the 
spectral components present and the way in which their frequencies and 
amplitudes vary during the sound. In Chapter 4 the acoustics of musical 
instruments are considered in terms of the output from the instrument as 
a consequence of the effect of the sound modifiers on the sound input (e.g., 
Figure 4.2). What is not considered, due to the complexity of modeling, is 
the acoustic development from silence at the start of the note and back to 
silence at the end. It is then convenient to consider a note in terms of three 
phases: the “onset” or “attack” (the build-up from silence at the start of the 
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note), the “steady state” (the main portion of the note), and the “offset” or 
“release” (the return to silence at the end of the note after the energy source 
is stopped). The onset and offset portions of a note tend to last for a short 
time, of the order of a few tens of milliseconds (or a few hundredths of a 
second). Changes that occur during the onset and offset phases, and in par-
ticular during the onset, turn out to have a very important role in defining 
the timbre of a note.

In this chapter, timbre is considered in terms of the acoustics of sounds 
which have different timbres, and the psychoacoustics of how sounds are per-
ceived. Finally, the pipe organ is reviewed in terms of its capacity to synthesize 
different timbres.

5.2  aCOustiCs Of timbre

The description of the acoustics of notes played on musical instruments 
presented in Chapter 4 was in many cases supported by plots of waveforms 
and spectra of the outputs from some instruments (Figures 4.17, 4.22, 4.24 
and 4.29). Except in the plots for the plucked notes on the lute and guitar 
(Figure 4.11) where the waveforms are for the whole note and the spec-
tra are for a single spectral analysis, the waveform plots show a few cycles 
from the steady-state phase of the note concerned and the spectral plots are 
based on averaging together individual spectral measurements taken during 
the steady-state phase. The number of spectra averaged together depends 
on how long the steady-state portion of the note lasts. For the single notes 
illustrated in Chapter 4, spectral averaging was carried out over approxi-
mately a quarter to three quarters of a second, depending on the length of 
the note available.

An alternative way of thinking about this is in terms of the number 
of cycles of the waveform over which the averaging takes place, which 
would be 110 cycles for a quarter of a second to 330 cycles for three quar-
ters of a second for A4 (f0  440 Hz), or 66 cycles to 198 cycles for C4 
(f0  261.6 Hz). Such average spectra are commonly used for analyzing 
the frequency components of musical notes, and they are known as “long-
term average spectra” or “LTAS.” One main advantage of using LTAS is that 
the spectral features of interest during the steady-state portion of the note 
are enhanced in the resulting plot by the averaging process with respect to 
competing acoustic sounds, such as background noise, which change over 
the period of the LTAS and thus average towards zero.

LTAS cannot, however, be used to investigate acoustic features that 
change rapidly such as the onset and offset of musical notes, because these 
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will also tend to average towards zero. In terms of the timbre of the note, it 
is not only the variations that occur during the onset and offset that are of 
interest, but also how they change with time. Therefore an analysis method 
is required in which the timing of acoustic changes during a note is pre-
served in the result. One analysis technique commonly used for the acoustic  
analysis of speech is a plot of amplitude, frequency and time known as a 
“spectrogram.” Frequency is plotted on the vertical scale, time on the hori-
zontal axis and amplitude is plotted as the darkness on a gray scale, or in 
some cases the color, of the spectrogram.

The upper plot in Figure 5.1 shows a spectrogram and acoustic pres-
sure waveform of C4 played on a principal 8 (open flue), the same note for 
which an LTAS is presented in Figure 4.17. The LTAS plot in Figure 4.17 
showed that the first and second harmonics dominate the spectrum, the 
amplitude of the third harmonic being approximately 8 dB lower than the 
first harmonic, and with energy also clearly visible in the fourth, fifth, sev-
enth and eighth harmonics whose amplitudes are at least 25 dB lower than 
that of the first harmonic.

A spectrogram shows which frequency components are present (mea-
sured against the vertical axis), at what amplitude (blackness of marking) 
and when (measured against the horizontal axis). Thus harmonics are rep-
resented on spectrograms as horizontal lines, where the vertical position of 
the line marks the frequency and the horizontal position shows the time for 
which that harmonic lasts. The amplitudes of the harmonics are plotted as 
the blackness of marking of the lines. The frequency and time axes on the 
spectrogram are marked and the amplitude is shown as the blackness of the 
marking.

The spectrogram shown in Figure 5.1 shows three black horizon-
tal lines which are the first three harmonics of the principal note (since 
the frequency axis is linear, they are equally spaced). The first and second 
harmonics are slightly blacker (and thicker) than the third, reflecting the 
amplitude difference as shown in Figure 4.17. The fourth, fifth and seventh 
harmonics are visible and their amplitude relative to the first harmonic is 
reflected in the blackness with which they are plotted.

5.2.1  Note envelope
The onset, steady-state, and offset phases of the note are indicated above 
the waveform in the figure, and these are determined mainly with refer-
ence to the spectrogram because they relate to the changes in spectral con-
tent at the start and end of the note, leaving the steady portion in between. 
However, “steady state” does not mean that no aspect of the note varies. 
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The timbre of a principal organ stop sounds “steady” during a prolonged 
note such as that plotted, which lasts for approximately 2 seconds, but it is 
clear from the acoustic pressure waveform plot in Figure 5.1 that the ampli-
tude, or “envelope,” varies even during the so-called “steady-state” portion 
of this note. This is an important aspect of musical notes to be aware of 
when, for example, synthesizing notes of musical instruments; particularly 
if using looping techniques on a sampling synthesizer.
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For the principal pipe, the end of the note begins when the key is released 
and the air flowing from the organ bellows to drive the air reed is stopped. 
In the note offset for this example, which lasts approximately 200 ms,  
the high harmonics die away well before the first and second. However, 
interpretation of note offsets is rather difficult if the recording has been 
made in an enclosed environment as opposed to free space (see Chapter 4), 
since any reverberation due to the acoustics of the space is also being ana-
lyzed (see Chapter 6). It is difficult to see the details of the note onset in 
this example, due to the timescale required to view the complete note.

The note onset phase is particularly important to perceived timbre. 
Since listeners can reliably perceive the timbre of notes during the steady-
state phase, it is clear that the offset phase is rather less important to the 
perception of timbre than the onset and steady-state phases. The onset 
phase is also more acoustically robust from the effects of the local environ-
ment in which the notes are played, since coloration of the direct sound 
by the first reflection (see Chapter 6) may occur after the onset phase is 
complete (and therefore transmitted uncolored to the listener). By defini-
tion the first reflection certainly occurs after part of the note onset has been 
heard uncolored. The onset phase is therefore a vital element and the off-
set phase an important factor in terms of timbre perception. Spectrograms 
whose timescales are expanded to cover the time of the note onset phase 
are particularly useful when analyzing notes acoustically.

The lower plot in Figure 5.1 shows an expanded timescale version of the 
upper plot in the figure, showing the note onset phase which lasts approxi-
mately 70 ms, and the start of the steady-state phase. It can be seen that 
the detail of the onset instant of each of the harmonics is clearly visible, 
with the second harmonic starting approximately 30 ms before the first 
and third harmonics. This is a common feature of organ pipes voiced with 
a chiff or consonantal onset which manifests itself acoustically in the onset 
phase as a initial jump to the first, or sometimes higher, overblown mode.

The first overblown mode for an open flue pipe is to the second har-
monic (see Chapter 4). Careful listening to pipes voiced with a chiff will 
reveal that open pipes start briefly an octave high since their first over-
blown mode is the second harmonic, and stopped pipes start an octave and 
a fifth high since their first overblown mode is the third harmonic. The 
fourth harmonic in the figure starts with the third and its amplitude briefly 
drops 60 ms into the sound when the fifth starts, and the seventh starts 
almost with the second and its amplitude drops 30 ms later. The effect of 
the harmonic build-up on the acoustic pressure waveform can be observed 
in Figure 5.1 in terms of the changes in its shape, particularly the grad-
ual increase in amplitude during the onset phase. The onset phase for 
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this principal organ pipe is a complex series of acoustic events, or acoustic 
“cues,” which are available as potential contributors to the listener’s per-
ception of the timbre of the note.

5.2.2  Note onset
In order to provide some data to enable appreciation of the importance of 
the note onset phase for timbre perception, Figures 5.2 to 5.4 are presented 
in which the note onset and start of the steady-state phases for four organ 
stops, four woodwind instruments and four brass instruments respectively 
are presented for the note C4 (except for the trombone and tuba for which 
the note is C3). By way of a caveat it should be noted that these figures are 
presented to provide only examples of the general nature of the acoustics of 
the note onset phases for these instruments. Had these notes been played 
at a different loudness, by a different player, on a different instrument, in a 
different environment, or even just a second time by the same player on the 
same instrument in the same place while attempting to keep all details con-
stant, the waveforms and spectra would probably be noticeably different.

The organ stops for which waveforms and spectra are illustrated in Figure 5.2  
are three reed stops: hautbois and trompette (LTAS in Figure 4.22) and a 
regal, and gedackt (LTAS in Figure 4.17), which is an example of a stopped 
flue pipe. The stopped flue supports only the odd modes (see Chapter 4), and, 
during the onset phase of this particular example, the fifth harmonic sounds 
first, which is the second overblown mode sounding two octaves and a major 
third above the fundamental (see Figure 3.3), followed by the fundamental 
and then the third harmonic, giving a characteristic chiff to the stop.

The onset phase for the reed stops is considerably more complicated 
since many more harmonics are present in each case. The fundamental 
for the hautbois and regal is evident first, and the second harmonic for the 
trompette. In all cases, the fundamental exhibits a frequency rise at onset 
during the first few cycles of reed vibration. The staggered times of entry 
of the higher harmonics form part of the acoustic timbral characteristic of 
that particular stop, the trompette having all harmonics present up to the 
4 kHz upper frequency bound of the plot, the hautbois having all harmon-
ics up to about 2.5 kHz, and the regal exhibiting little or no evidence (at 
this amplitude setting of the plot) of the fourth or eighth harmonics.

Figure 5.3 shows plots for four woodwind instruments: clarinet, oboe, 
tenor saxophone and flute. For these particular examples of the clarinet and 
tenor saxophone, the fundamental is apparent first and the oboe note begins 
with the second harmonic, followed by the third and fourth harmonics after 
approximately 5 ms, and then the fundamental some 8 ms later. The higher 
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harmonics of the clarinet are apparent nearly 30 ms after the fundamental; 
the dominance of the odd harmonics is discussed in Chapter 4.

This particular example of C4 from the flute begins with a notably 
“breathy” onset just prior to and as the fundamental component starts. This 
can be seen in the frequency region of the spectrogram that is above 2 kHz 
lasting some 70 ms. The higher harmonics enter one by one approximately 
80 ms after the fundamental starts. The rather long note onset phase is 
characteristic of a flute note played with some deliberation. The periodicity 
in the waveforms develops gradually, and in all cases there is an appreciable 
time over which the amplitude of the waveform reaches its steady state.

Figure 5.4 shows plots for four brass instruments. The notes played on 
the trumpet and French horn are C4, and those for the trombone and tuba 
are C3. The trumpet is the only example with energy in high harmonic com-
ponents in this particular example, with the fourth, fifth and sixth harmonics 
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Waveform (upper) and 
spectrogram (lower) of the 
note onset phase for C4 
played on the following pipe 
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notes are shown in Figure 
4.22, and for the gedackt 
in Figure 4.17.
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having the highest amplitudes. The other instruments in this figure do not 
have energy apparent above approximately the fourth harmonic (French horn 
and tuba) or the sixth harmonic for the trombone. The note onset phase for 
all four instruments starts with the fundamental (noting that this is rather 
weak for the trombone), followed by the other harmonics. The waveforms in 
all cases become periodic almost immediately.

Waveforms and spectrograms are presented in the upper plot of Figure 5.5 
for C4 played with a bow on a violin. Approximately 250 ms into the violin 
note, vibrato is apparent as a frequency variation particularly in the high har-
monics. This is a feature of using a linear frequency scale, since a change of x 
Hz in f0 will manifest itself as a change of 2x Hz in the second harmonic, 3x 
Hz in the third harmonic, and so on. In general the frequency change in the 
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Waveform (upper) and 
spectrogram (lower) of the 
note onset phase for C4 
played on a clarinet, flute, 
oboe and tenor saxophone. 
LTAS for the clarinet and 
tenor saxophone are shown 
in Figure 4.24.
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nth harmonic will be nx Hz; therefore the frequency variation in the upper 
harmonics during vibrato will be greater than that for the lower harmon-
ics when frequency is plotted on a linear scale as in the figure. Vibrato often 
has a delayed start, as in this example, as the player makes subtle intona-
tion adjustments to the note. This particular bowed violin note has an onset 
phase of approximately 160 ms and an offset phase of some 250 ms.

Finally in this section, a note is analyzed from a CD recording of a 
professional tenor singing the last three syllables of the word Vittoria (i.e., 
“toria”) on B4 from the second act of Tosca by Puccini (lower plot in Figure 
5.5). This is a moment in the score when the orchestra stops playing and 
leaves the tenor singing alone. The orchestra stops approximately 500 ms 
into this example: its spectrographic record can be seen particularly in the 
lower left-hand corner of the spectrogram, where it is almost impossible 
to analyze any detailed acoustic patterning. This provides just a hint at 
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shown in Figure 4.29.
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the real acoustic analysis task facing the hearing system when listening to 
music.

The spectrogram of the tenor shows the harmonics and the extent of the 
vibrato very clearly, and his singer’s formant (compare with Figure 4.38) can 
be clearly seen in the frequency region between 2.4 kHz and 3.5 kHz.The 
first and third of the three syllables (“toria”) are long, and the second (“ri”) 
is considerably shorter in this particular tenor’s interpretation. The second  
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UPPER: Waveform and 
spectrogram of C4 (262 Hz) 
played on a violin. LOWER: 
Waveform and spectrogram 
of the last three syllables 
of the word Vittoria from 
the second act of Tosca 
by Puccini sung by a 
professional tenor (f0  
B4) from a CD recording.
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syllable manifests itself as the dip in amplitude of all harmonics just over 
halfway through the spectrogram.

5.3  psyChOaCOustiCs Of timbre

A number of psychoacoustic experiments have been carried out to explore 
listeners’ perceptions of the timbre of musical instruments and the acous-
tic factors on which it depends. Such experiments have demonstrated, for 
example, that listeners cannot reliably identify musical instruments if the 
onset and offset phases of notes are removed. For example, if recordings of 
a note played on a violin open string and the same note played on a trum-
pet are modified to remove their onset and offset phases in each case, it 
becomes very difficult to tell them apart.

The detailed acoustic nature of a number of example onset phases is 
provided in Figures 5.1 to 5.5, from which differences can be noted. Thus, 
for example, the initial scraping of the bow on a stringed instrument, the 
consonant-like onset of a note played on a brass instrument, the breath 
noise of the flautist, the initial flapping of a reed, the percussive thud of 
a piano hammer and the final fall of the jacks of a harpsichord back onto 
the strings are all vital acoustic cues to the timbral identity of an instru-
ment. Careful attention must be paid to such acoustic features, for example 
when synthesizing acoustic musical instruments if the resulting timbre is 
to sound convincingly natural to listeners.

5.3.1  Critical bands and timbre
A psychoacoustic description of timbre perception must be based on 
the nature of the critical bandwidth variation with frequency since this 
describes the nature of the spectral analysis carried out by the hearing 
system. The variation in critical bandwidth is such that it becomes wider 
with increasing frequency, and the general conclusion was drawn in the 
section on pitch perception in Chapter 3 (Section 3.2) that no harmonic 
above about the fifth to seventh is resolved no matter what the value of f0.  
Harmonics below the fifth to seventh are therefore resolved separately by 
the hearing system (e.g., see Figure 3.11), which suggests that these har-
monics might play a distinct and individual role in timbre perception. 
Harmonics above the fifth or seventh, on the other hand, which are not 
separately isolated by the hearing system are not likely to have such a 
strong individual effect on timbre perception, but could affect it as groups 
that lie within a particular critical band.
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Based on this notion, the perceived timbre is reviewed of instruments 
for which the results of acoustic analysis are presented in this book, bearing 
in mind that these analyses are for single examples of notes played on these 
instruments by a particular player on a particular instrument at a particular 
loudness and pitch in a particular acoustic environment.

Instruments amongst those for which spectra have been presented, 
which have significant amplitudes in harmonics above the fifth or seventh 
during their steady-state phases, include organ reed stops (see Figures 4.22 
and 5.2), the tenor saxophone (see Figures 4.24 and 5.3), the trumpet (see 
Figure 5.4), the violin and professional singing voice (see Figure 5.5). The 
timbres of such instruments might be compared with those of other instru-
ments using descriptive terms such as “bright,” “brilliant,” or “shrill.”

Instruments which do not exhibit energy in harmonics above the fifth 
or seventh during their steady-state phases include the principal 8 (see 
Figures 4.17 and 5.1), the gedackt 8(see Figures 4.17 and 5.2), the clarinet, 
oboe and flute (see Figures 4.24 and 5.3), and the trombone, French horn 
and tuba (see Figures 4.29 and 5.4). In comparison with their counterpart 
organ stops or other instruments of their category (woodwind or brass), 
their timbres might be described as being: “less bright” or “dark,” “less bril-
liant” or “dull,” or “less shrill” or “bland.”

Within this latter group of instruments there is an additional potential 
timbral grouping between those instruments which exhibit all harmonics 
up to the fifth or seventh, such as the clarinet, oboe, and flute, compared 
with those which just have a few low harmonics such as the principal 8, 
gedackt 8, trombone, French horn and tuba. It may come as a surprise to 
find the flute in the same group as the oboe and clarinet, but the lack of 
the seventh harmonic in the flute spectrum compared with the clarinet and 
oboe (see Figure 5.3) is crucial.

Notes excluding the seventh harmonic sound considerably less “reedy” 
than those with it; the seventh harmonic is one of the lowest which is not 
resolved by the hearing system (provided the sixth and/or eighth are/is also 
present). This last point is relevant to the clarinet where the seventh har-
monic is present but both the sixth and eighth are weak. The clarinet has 
a particular timbre of its own due to the dominance of the odd harmonics 
in its output, and it is often described as being “nasal.” Organists who are 
familiar with the effect of the tierce (13

5 ) and the rarely found septième  
(11

7 ) stops (see Section 5.4) will appreciate the particular timbral significance 
of the fifth and seventh harmonics respectively and the “reediness” they tend 
to impart to the overall timbre when used in combination with other stops.

Percussion instruments that make use of bars, membranes or plates as 
their vibrating system (described in Section 4.4), which are struck, have a 
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distinct timbral quality of their own. This is due to the non-harmonic rela-
tionship between the frequencies of their natural modes which provides a 
clear acoustic cue to their family identity. It gives the characteristic “clangi-
ness” to this class of instruments which endows them with a timbral quality  
of their own.

5.3.2  acoustic cues and timbre perception
Timbre judgments are highly subjective and therefore individualistic. 
Unlike pitch or loudness judgments, where listeners might be asked to 
rate sounds on scales of low to high or soft to loud respectively, there is 
no “right” answer for timbre judgments. Listeners will usually be asked to 
compare the timbre of different sounds and rate each numerically between 
two opposite extremes of descriptive adjectives, for example on a one to ten 
scale between “bright” (1)—”dark” (10) or “brilliant” (1)—”dull” (10), and 
a number of such descriptive adjective pairs could be rated for a particular 
sound. The average of ratings obtained from a number of listeners is often 
used to give a sound an overall timbral description. Hall (1991) suggests 
that it is theoretically possible that one day up to five specific rating scales 
could be “sufficient to accurately identify almost any timbre.”

Researchers have attempted to identify relationships between particular 
features in the outputs from acoustic musical instruments and their per-
ceived timbre. A significant experiment in this field was conducted by Grey 
(1977). Listeners were asked to rate the similarity between recordings of 
pairs of synthesized musical instruments on a numerical scale from 1 to 30.  
All sounds were equalized in pitch, loudness and duration. The results 
were analyzed by “multidimensional scaling” which is a computational 
technique that places the instruments in relation to each other in a multi-
dimensional space based on the similarity ratings given by listeners.

In Grey’s experiment, a three-dimensional space was chosen and each 
dimension in the resulting three-dimensional representation was then inves-
tigated in terms of the acoustic differences between the instruments lying 
along it “to explore the various factors which contributed to the subjective 
distance relationships.” Grey identified the following acoustic factors with 
respect to each of the three axes: (1) “spectral energy distribution” observed 
as increasing high-frequency components in the spectrum; (2) “synchronicity 
in the collective attacks and decays of upper harmonics” from sounds with 
note onsets in which all harmonics enter in close time alignment to those in 
which the entry of the harmonics is tapered; and (3) from sounds with “prec-
edent high-frequency, low-amplitude energy, most often inharmonic energy, 
during the attack phase” to those without high-frequency attack energy. 
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These results serve to demonstrate that (a) useful experimental work can 
and has been carried out on timbre, and (b) that acoustic conclusions can be 
reached which fit in with other observations, for example the emphasis of 
Grey’s axes (2) and (3) on the note onset phase.

The sound of an acoustic musical instrument is always changing, even 
during the rather misleadingly so-called “steady-state” portion of a note. 
This is clearly shown, for example, in the waveforms and spectrograms for 
the violin and sung notes in Figure 5.5. Pipe organ notes are often presented 
as being “steady” due to the inherent airflow regulation within the instru-
ment, but Figure 5.1 shows that even the acoustic output from a single 
organ pipe has an amplitude envelope that is not particularly steady. This 
effect manifests itself perceptually extremely clearly when attempts are 
made to synthesize the sounds of musical instruments electronically and no 
attempt is made to vary the sound in any way during its steady state.

Variation of some kind is needed during any sound in order to hold the 
listener’s attention. The acoustic communication of new information to a 
listener, whether speech, music, environmental sounds or warning signals 
from a natural or person-made source, requires that the input signal varies 
in some way, with time. Such variation may be of the pitch, loudness or 
timbre of the sound. The popularity of post-processing effects, particularly 
chorus (see Chapter 7), either as a feature on synthesizers themselves or as 
a studio effects unit reflects this. However, while these can make sounds 
more interesting to listen to by time variation imposed by adding post- 
processing, such an addition rarely does anything to improve the overall 
naturalness of a synthesized sound.

A note from any acoustic musical instrument typically changes dynami-
cally throughout in its pitch, loudness and timbre. Pitch and loudness have 
one-dimensional subjective scales from “low” to “high” that can be related 
fairly directly to physical changes which can be measured, but timbre has 
no such one-dimensional subjective scale. Methods have been proposed to 
track the dynamic nature of timbre based on the manner in which the har-
monic content of a sound changes throughout. The “tristimulus diagram” 
described by Pollard and Jansson (1982) is one such method in which the 
time course of individual notes is plotted on a triangular graph such as the 
example plotted in Figure 5.6.

The graph is plotted based on the proportion of energy in: (1) the sec-
ond, third and fourth harmonics or “mid” frequency components (Y axis); 
and (2) the high-frequency partials, which here are the fifth and above, or 
“high” frequency components (X axis); and (3) the fundamental or f0 (where 
X and Y tend towards zero). The corners of the plot in Figure 5.6 are 
marked: “mid”, “high” and “f0” to indicate this. A point on a tristimulus 
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diagram therefore indicates the relationship between f0, harmonics which 
are resolved, and harmonics which are not resolved.

The tristimulus diagram enables the dynamic relationship between 
high, mid and f0 to be plotted as a line, and several are shown in the figure 
for the note onset phases of notes from a selection of instruments (data 
from Pollard and Jansson, 1982). The time course is not even and is not 
calibrated here for clarity. The approximate steady-state position of each 
note is represented by the open circle, and the start of the note is at the 
other end of the line. The note onsets in these examples lasted as follows: 
gedackt (10–60 ms); trumpet (10–100 ms); clarinet (30–160 ms); principal 
(10–150 ms); and viola (10–65 ms). The track taken by each note is very 
different and the steady-state positions lie in different locations. Pollard 
and Jansson present data for additional notes on some of these instruments 
which suggest that each instrument maintains its approximate position 
on the tristimulus representation as shown in the figure. This provides a 
method for visualizing timbral differences between instruments which is 
based on critical band analysis. It also provides a particular representation 
which gives an insight as to the nature of the patterns which could be used 
to represent timbral differences perceptually.
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figure 5.6
Approximate timbre 
representation by means 
of a tristimulus diagram 
for note onsets of notes 
played on a selection of 
instruments. In each case, 
the note onset tracks along 
the line towards the open 
circle which represents the 
approximate steady-state 
position. “Mid” represents 
“strong mid-frequency 
partials”; “High” represents 
“strong high-frequency 
partials”; “f0” represents 
“strong fundamental”. 
(Data from Pollard and 
Jansson, 1982.)
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The tristimulus representation essentially gives the relative weighting 
between the f0 component, those harmonics other than the f0 component 
that are resolved, and those that are not resolved. The thinking underly-
ing the tristimulus representation is itself not new in regard to timbre. In 
his seminal work, On the Sensations of Tone as a Physiological Basis for the 
Theory of Music—first published in 1877—Helmholtz (1877, translated 
into English in 1954) deduced four general rules in regard to timbre, which 
he presented “to shew the dependence of quality of tone from the mode in 
which a musical tone is compounded” (Helmholtz, 1877). It should though 
be remembered that for Helmholtz, no notion of critical bands or today’s 
models of pitch and loudness perception were known at that time to support 
his thinking. Despite this, the four general rules for timbre that Helmholtz 
developed demonstrate insights that are as relevant today as they were then 
in the context of our understanding of the objective nature of timbre. The 
four rules (Helmholtz [1877], translation [1954] pp. 118–119) are as follows 
(track 63 on the accompanying CD illustrates these).

 1.  Simple tones, like those of tuning forks applied to resonance chambers 
and wide stopped organ pipes, have a very soft, pleasant sound, free 
from all roughness, but wanting in power, and dull at low pitches.

 2.  Musical tones, which are accompanied by a moderately loud series 
of the lower partial tones up to about the sixth partial, are more 
harmonious and musical. Compared with simple tones they are 
rich and splendid, while they are at the same time perfectly sweet 
and soft if the higher upper partials are absent. To these belong the 
musical tones produced by the pianoforte, open organ pipes, the 
softer piano tones of the human voice and the French horn.

 3.  If only the unevenly numbered partials are present (as in narrow 
stopped organ pipes, pianoforte strings struck in their middle points, 
and clarinets), the quality of the tone is hollow, and, when a large 
number of such partials are present, nasal. When the prime tone 
predominates the quality of the tone is rich; but when the prime 
tone is not sufficiently superior in strength to the upper partials, the 
quality of tone is poor.

 4.  When partials higher than the sixth or seventh are very distinct, 
the quality of the tone is cutting or rough. . . . The most important 
musical tones of this description are those of the bowed instruments 
and of most reed pipes, oboe, bassoon, harmonium and the human 
voice. The rough, braying tones of brass instruments are extremely 
penetrating, and hence are better adapted to give the impression of 
great power than similar tones of a softer quality.
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These general rules provide a basis for considering changes in timbre with 
respect to sound spectra which link directly with today’s understand-
ing of the nature of the critical bandwidth. His second and fourth general 
rule make a clear distinction between sounds in which partials higher than 
the sixth or seventh are distinct or not, and his first rule gives a particu-
lar importance to the f0 component. It is worth noting the similarity with 
the axes of the tristimulus diagram as well as axis (I) resulting from Grey’s 
multidimensional experiment. It is further worth noting which words 
Helmholtz chose to describe the timbre of the different sounds (bearing in 
mind that these have been translated by Alexander Ellis in 1954 from the 
German original). As an aside on the word timbre itself, Alexander Ellis 
translated the German word klangfarbe as “quality of tone” which he argued 
is “familiar to our language”. He notes that he could have used one of the 
following three words: register, color, or timbre, but he chose not to because 
of the following common meanings that existed for these words at the time.

 1.  Register—”has a distinct meaning in vocal music which must not be 
disturbed.”

 2.  Timbre—means kettledrum, helmet, coat of arms with helmet; in 
French it means “postage stamp.” Ellis concluded that: “timbre is a 
foreign word, often mispronounced and not worth preserving.”

 3.  Color—”is used at most in music as a metaphorical expression.”

Howard and Tyrrell (1997) describe a frequency domain manifestation of the 
four general rules based on the use of spectrograms which display the output 
of a human hearing modeling analysis system. This is described in the next 
few paragraphs, and it is based on Figure 5.7 which shows human hearing 
modeling spectrograms for the following synthesized sounds: (a) a sinewave, 
(b) a complex periodic tone consisting of the first five harmonics, (c) a com-
plex periodic tone consisting of the odd harmonics only from the first to the 
nineteenth inclusive, and (d) a complex periodic tone consisting of the first 
20 (odd and even) harmonics. In each case, the f0 varies between 128 Hz and 
160 Hz. The sounds (a–d) were synthesized to represent the sounds described 
by Helmholtz for each of the general rules (1–4). The key feature to note 
about the hearing modeling spectrogram is that the sound is analyzed via 
a bank of filters that model the auditory filters in terms of their shape and 
bandwidth. As a result, the frequency axis is based on the ERB (equivalent 
rectangular bandwidth) scale itself, since the output from each filter is plot-
ted with an equal distance on the frequency axis of the spectrogram.

Howard and Tyrrell (1997) note the following. The human hearing 
modeling spectrogram for the sinewave exhibits a single horizontal band 
of energy (the f0 component) which rises in frequency (from 128 to 160 Hz) 
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during the course of the sound. It is worth noting the presence of the f0 
component in all four spectrograms since its variation is the same in each 
case. For the sound consisting of the first five harmonics, it can be seen 
that these are isolated separately as five horizontal bands of energy. These 
harmonic bands of energy become closer together with increasing frequency 
on the spectrogram due to the nature of the ERB frequency scale.

In the spectrogram of the fourth sound, where all harmonics are present 
up to the twentieth, the lowest six or seven harmonics appear as horizontal 
bands of energy and are therefore resolved, but the energy in the frequency 
region above the seventh harmonic is plotted as vertical lines, known as 
“striations,” which occur once per cycle (recall the discussion about the 
temporal theory of pitch perception). This is because all filters with center 
frequencies above the seventh harmonic have bandwidths that are greater 
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Gamma tone spectrograms 
of synthesized sounds with 
the f0 varying between 
128 Hz and 160 Hz: 
(a) a sinewave, (b) a 
complex periodic tone 
consisting of the first five 
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only from the first to the 
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(d) a complex periodic tone 
consisting of the first 20 
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than the f0 of the sound, and therefore at least two adjacent harmonics are 
captured by each of these filters.

In the spectrogram of the third sound, where only the odd harmonics 
up to the nineteenth are present, there are approximately seven resolved 
horizontal energy bands, but in this case these are the lowest seven odd 
harmonics, or the first to the thirteenth harmonic inclusive. The point at 
which the odd harmonics cease to be resolved occurs where the spacing 
between them (2f0—the spacing between the odd harmonics) is less than 
the ERB. This will occur at about the position of the fifth to seventh har-
monic of a sound with double the f0: somewhere between the tenth and the 
fourteenth harmonic of this sound, which concurs with the spectrogram.

Table 5.1, which has been adapted from Howard and Tyrrell (1997), pro-
vides a useful summary of the key features of the human hearing spectrogram 

table 5.1  �Summary�of�the�frequency�domain�properties�as�exemplified�
by�the�human�hearing�modeling�spectrograms,�example�timbre�
descriptions�and�example�acoustic�instruments�which�fall�under�
each�of�the�four�rules�introduced�by�Helmholtz�(1877).�(Table�
adapted�from�Howard�and�Tyrrell,�1997)

helmholtz 
rule

human hearing 
modeling spectrogram

example timbre 
descriptors

example acoustic 
instruments

1 f0�dominates Pure
Soft
Simple
Pleasant
Dull�at�low�pitch
Free�from�roughness

Tuning�fork
Wide�stopped��
organ�flues
Baroque�flute

2 Harmonics�dominate Sweet�and�soft
Rich
Splendid
Dark
Dull
Less�shrill
Bland

French�horn,�tuba
Modern�flute
Recorder
Open�organ�flues
Soft�sung�sounds

3 Odd�harmonics�
dominate

Hollow
Nasal

Clarinet
Narrow�stopped�organ�
flues

4 Striations�dominate Cutting
Rough
Bright
Brilliant
Shrill
Brash

Oboe,�bassoon
Trumpet,�trombone
Loud�sung�sounds
Bowed�instruments
Harmonium
Organ�reeds
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example timbre descriptors (including those proposed by Helmholtz) and 
example acoustic instruments for each of the four Helmholtz general rules.  
Howard and Tyrrell note, though, “that the grouping of instruments into  
categories is somewhat generalized, since it may well be possible to produce 
sounds on these instruments where the acoustic output would fall into another 
timbral category based on the frequency domain [hearing modeling] descrip-
tion, for example by the use of an extended playing technique.” Human hear-
ing modeling spectrographic analysis has also been applied to speech (Brookes 
et al., 2000), forensic audio (Howard et al., 1995) and singing (Howard, 2005), 
where it is providing new insights into the acoustic content that is relevant to 
human perception of sound.

Audio engineers need to understand timbre to allow them to commu-
nicate successfully with musicians during recording sessions in a manner 
that everyone can understand. Many musicians do not think in terms of 
frequency but they are well aware of the ranges of musical instruments 
which they will discuss in terms of note pitches. Sound engineers who take 
the trouble to work in these terms will find the communication process 
both easier and more rapid with the likely result that the overall quality 
of the final product is higher than it might have been otherwise. Reference 
to Figures 3.21 and 4.3 will provide the necessary information in terms of 
the f0 values for the equal tempered scale against a piano keyboard and the 
overall frequency ranges of common musical instruments.

Timbral descriptions also have their place in musician/sound engi-
neer communication, but this is not a trivial task since many of the  
words employed have different meanings depending on who is using them. 
Figure 5.8 shows a diagram adapted from Katz (2007) in which timbral 
descriptors are presented that relate to boosting or reducing energy in the 
spectral regions indicated set against a keyboard, frequency values spanning 
the normally quoted human hearing range of 20 Hz to 20 kHz and terms 
(“sub bass,” “bass,” “midrange” and “treble”) commonly used to describe 
spectral regions. The timbral descriptors are separated by a horizontal 
line which indicates whether the energy in the frequency region indicated 
has to be increased or decreased to modify the sound as indicated by the 
timbral term. For example, using an equalizer a sound can be made thin-
ner by decreasing the energy in the frequency range between about 100 Hz 
and 500 Hz (note that “this” is under the horizontal line in the “energy 
down” part of the diagram). The sound will become brighter, more sibilant, 
harsher, and sweeter by increasing the energy around 2 kHz and 8 kHz.

It is curious to note that a sound can be made warmer by either increas-
ing the energy between approximately 200 and 600 Hz or by reducing the 
energy in the 3–7 kHz region. Increasing projection approximately in the 
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2.5–4 kHz region relates primarily to voice production and specifically to 
providing a hint of singer’s formant (see Section 4.5.2), which has the effect 
of bringing a singer out towards the front of a mix. This must, however, be 
done judiciously using a boost of just a few dB otherwise the sound will 
tend towards being edgy and harsh; a trained singer modifies other aspects 
of his or her vocal output such as vibrato.

In an experiment to establish which adjectives were commonly used in 
a similar manner by musicians, listening tests were carried out with musi-
cians (Howard et al., 2007) who were asked to rate a set of sounds using 
various adjectives. They found that the following adjectives had the highest 
agreement between listeners when describing the sounds: bright, percus-
sive, gentle, harsh and warm, whilst those with the least were: nasal, ring-
ing, metallic, wooden and evolving. Listeners were also asked to indicate 
their confidence in assigning the adjectives: the one that elicited the least 
confidence was evolving, whilst the highest confidence ratings were given 
to clear, percussive, ringing and bright.

There is still much work to be done on timbre to understand it more 
fully. While there are results and ideas which indicate what acoustic aspects 
of different instruments contribute to the perception of their timbre differ-
ences, such differences are far too coarse to explain how the experienced 
listeners are able to tell apart the timbre differences between, for example, 
violins made by different makers. The importance of timbre in music per-
formance has been realized for many hundreds of years as manifested in 
the so-called “king” of instruments—the pipe organ—well before there was 
any detailed knowledge of the function of the human hearing system.

Mid

Full
Punchy bass Impact

Projection Treble
Presence

Up
Solidity

Fat

Energy

Down

Boomy Slam
Bass Warm

Thin
Sweet
Warm Dull

Thick

Muddy

Nasal
Harsh

Sibilant
Bright

Airy
Sweet

Boxy

31.25 62.5 125
20

125 500 1k 2k 4k 8k
20k

16k

Sub bass Bass Midrange Treble

Frequency (Hz)

figure  5.8  Timbral descriptors used to describe the effect of boosting (above) and reducing 
(below) the spectral energy in various frequency regions set against a keyboard (middle C marked with 
a spot). Frequency values spanning the normally quoted human hearing range of 20 to 20 kHz, and 
terms commonly used to describe spectral regions are shown. (Adapted from Katz, 2007.)
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5.4  the pipe OrgaN as a timbral syNthesizer

A pipe organ is one of the earliest forms of “additive synthesizer” for cre-
ating different sound timbres. In additive synthesis, the output sound is 
manipulated by means of adding harmonics together, and the stops of 
a pipe organ provide the means for this process. There are references to 
the existence of some form of pipe organ going back at least to 250 BC 
(Sumner, 1975).

A modern pipe organ usually has two or more keyboards, or “manuals,”  
each with up to five octaves (61 notes from C2 to C7) and a pedal board 
with up to two and a half octaves (32 note from C1 to G3). Very large 
organs might have up to six manuals, and small “chamber” organs might 
have one manual and no pedals. Each stop on a five octave manual has  
61 pipes, apart from stops known as “mixtures” which have a number of 
pipes per note. An organ stop which has the same f0 values as on a piano 
(i.e., f0 for the note A4 is 440 Hz—see Figure 3.21) is known as an “eight 
foot” or 8 rank on the manuals and “sixteen foot” or 16 rank on the 
pedals. Eight and sixteen feet are used because they are the approximate 
lengths of open pipes of the bottom note of a manual (C2) and the pedals 
(C1) respectively. The pedals thus sound an octave below the note written 
on the score. A 4 rank and a 2 rank would sound one and two octaves 
higher than an 8 rank respectively, and a 32 rank would sound one octave 
lower than a 16 rank.

It should be noted that this footage terminology is used to denote the 
sounding pitch of the rank and gives no indication as to whether open or 
stopped pipes are employed. Thus a stopped rank on a manual sounding a 
pitch equivalent to a rank of 8 open pipes would have a four foot long bot-
tom stopped pipe but its stop knob would be labeled as 8.

Organs have a number of stops on each manual of various footages, 
most of which are flues. Some are voiced to be used alone as solo stops, 
usually at 8 pitch, but the majority are voiced to blend together to allow 
variations in loudness and timbre to be achieved by acoustic harmonic syn-
thesis by drawing different combinations of stops. The timbral changes are 
controlled by reinforcing the natural harmonics of the 8 harmonic series 
on the manuals (16 harmonic series for the pedals). The following equa-
tion relates the footage of a stop to the member of the harmonic series 
which its fundamental reinforces:

 

(stop footage) (footage of first harmonic)/
where harmon
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Thus, for example, the footage of the stop where the fundamental rein-
forces the sixth harmonic on the manuals (which is related to the 8 har-
monic series) is given by:
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The footage of the stop where the fundamental reinforces the third harmonic 
on the pedals (which is related to the 16 harmonic series) is given by:
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Footages of organ stops which might be found on pipe organs are given in 
Table 5.2, along with a selection of names used for members of the flute 
family, other flue stops and reeds. The interval of each footage shown with 
respect to an 8 stop is given in degrees of a major scale (note that all the 
sevenths are flat as indicated by “(b)”), those footages that are members of 
the natural 8, 16, 32and 64harmonic series are given as harmonic num-
bers, and the f0 values in Hz are provided for the bottom C (manuals or 
pedals). Those stops which reinforce harmonics that are neither in unison 
(1:1) with, nor a whole number of octaves away (i.e., 2:1; 4:1; 8:1; . . . or 
2n:1) from, the first harmonic are known as “mutation” stops. The stops 
shown include those found on manuals as well as the pedals. Only the larg-
est cathedral organs contain the majority of footages as shown; many small 
parish church organs will have a small selection, usually including flues at 
8, 4, 2 and perhaps 22

3  as well as one or two reed stops.
The organist can build up the overall sound of the organ by drawing 

stops which build on the harmonic series of 8 on the manuals (consider 
tracks 64 and 65 on the accompanying CD) and 16 on the pedals. It is 
important to note, however, that a single 8 open diapason or principal stop, 

example 5.1

find the footage of pipe organ stops which reinforce the third and seventh natural 
harmonics of the 8 harmonic series.

The�third�harmonic�is�reinforced�by�a�stop�of
�

8
3

22
3












 

The�seventh�harmonic�is�reinforced�by�a�stop�of
�

8
7

11
7
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table 5.2  �Example�non-mixture�organ�stop�names,�their�footages,�f0�values�for�bottom�C,�sounding�
interval�to�8�in�degrees�of�the�major�scale,�and�their�harmonic�number�in�the�8,�16,�32�
and�64�harmonic�series.�Flues�are�indicated�in�bold�and�reeds�in�italic.�The�sevenths�are�all�
indicated�with�“(b)”�to�show�that�they�are�flat

example stop names
(flute, other flues, reeds)

stop
footage

interval to
8

harmonic to f0
bottom C

8 16 32 64

gravissima,�resultant�bass,�diaphone dulzian, contra 
trombone�dulzian

64 22nd�below — — — 1 8.2�Hz

double�bourdon,�acoustic�bass 42�2/3 18th�below — — — — 12.2�Hz

double�open�diapason,�contra�violone,�diaphone�contra 
trombone, contra bombarde, contra cor Anglais

32 15th�below — — 1 2 16.4�Hz

tibia�clausa 21�1/3 11th�below — — — 3 24.6�Hz

bourdon,�open�bass,�open�wood,�quintadena,�quintaton,�
melodia,�grosse�geigen,�double�diapason,�regal, posaune, 
ophicleide, bombarde, fagotto, trombone, double trumpet

16 8th�below — 1 2 4 32.7�Hz

tierce 12�4/5 6th�below — — — 5 40.9�Hz

double�quint,�sub�quint,�trumpet profunda 10�2/3 4th�below — — 3 6 49.1�Hz

septième 9�1/7 1st�below�(b) — — — 7 57.3�Hz

stopped�diapason,�gedackt,�claribel,�open�diapason,�
principal,�dulciana,�gamba,�salicional,�tuba, trumpet, 
tromba, horn, oboe, cornopean, krummhorn, clarinet, 
posaune

8 unison 1 2 4 8 65.4�Hz

voix�celeste,�vox�angelica,�viol�celeste,�unda�maris�(2�ranks:�
8�&�8#)

8—�# unison 1 2 4 8 65.4�Hz

third,�tierce,�tromba tierce 6�2/5 3rd�above — — 5 10 81.75�Hz

quint 5�1/3 5th�above — 3 6 12 98.1�Hz

septième 4�4/7 7th�above�(b) — — 7 14 114.5�Hz

rohrflüte,�spitzflüte,�principal,�gemshorn,�octave,�salicet,�
clarion, octave tuba, schalmei

4 8th�above 2 4 8 16 130.8�Hz

double�tierce,�tenth 3�1/5 10th�above — 5 10 20 163.5�Hz

rohrquint,�nazard,�twelfth,�octave�quint 2�2/3 12th�above 3 6 12 24 196.2�Hz

seventh,�septième 2�2/7 14th�above�(b) — 7 14 28 228.9�Hz

piccolo,�principal,�fifteenth,�super�octave 2 15th�above 4 8 16 32 261.6�Hz

tierce,�seventeenth 1�3/5 17th�above 5 10 20 40 327.0�Hz

larigot,�nineteenth,�nasat 1�1/3 19th�above 6 12 24 48 392.4�Hz

septième 1�1/7 21st�above�(b) 7 14 28 56 457.8�Hz

sifflöte,�spitzflöte 1 22nd�above 8 16 32 64 523.2�Hz

none,�dulciana�twenty-third 8/9 23rd�above 9 18 36 72 588.6�Hz

third 4/5 24th�above 10 20 40 80 654.0�Hz

eleventh 8/11 25th�above 11 22 44 88 719.4�Hz

fifth 2/3 26th�above 12 24 48 96 784.8�Hz

Gemshorn 1/2 29th�above 16 32 64 128 1046.4�Hz

French�thirty-first 2/5 31st�above 20 40 80 160 1308.0�Hz

gemshorn 1/4 36th�above 32 64 128 256 2092.8�Hz
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which produces the foundation 8 tone of the organ, consists of open flue 
pipes, which themselves are rich in harmonics (see Figure 5.1). Adding an 
open flue 4 principal will not only enhance the second harmonic of the  
8 stop in particular, but also all other even harmonics. In general, when a 
stop is added that is set to reinforce a member (n  1, 2, 3, 4, . . .) of the nat-
ural harmonic series, it also enhances the (2 * n, 3 * n, 4 * n, . . .) members.

There is a basic pipe organ timbral issue when tuning the instrument to 
equal temperament (see Chapter 3). Mutation stops have to be tuned in their 
appropriate integer frequency ratio (see Figure 3.3) to reinforce harmonics 
appropriately, but as a result of this they are not tuned in equal temperament 
and therefore they introduce beats when chords are played. For example, if a  
C is played with 8 and 2/3 stops drawn, the f0 of the C on the 22

3  rank 
will be exactly in tune with the third harmonic of the C on the 8 rank. If the 
G above is now played also to produce a two-note chord, the first harmonic 
of the G on the 8 rank will beat with the f0 of the C on the 22

3  rank (and 
the third harmonic of the C on the 8 rank).

Equal tempered tuning thus colors with beats the desired effect of adding 
mutation stops, and therefore the inclusion of mutation stops tended to go 
out of fashion with the introduction of equal temperament tuning (Padgham, 
1986). Recent movements to revive the performance of authentic early 
music have extended to the pipe organ, and the resulting use of non-equal 

table 5.3  �Example�mixture�organ�stop�names,�the�number�of�ranks�and�
typical�intervals�as�degrees�of�the�major�scale�to�the�first�harmonic�
of�the�natural�series�(8�for�manuals�and�16�for�pedals).�Note�
that�these�intervals�change�across�the�keyboard/pedal�board�as�
discussed�in�the�text

mixture stop name No. ranks typical intervals to first 
harmonic

Sesquialtera II 12,�17

Tertian II 17,�19

Mixture II 19,�22

Zimbal III 15,�17,�19

Mixture III 19,�22,�26

Cymbal III 29,�33,�36

Scharff III 26,�29,�33

Plein�jeu/mixture IV 19,�22,�26,�29

Mixture V 15,�19,�22,�26,�29

Pedal�mixtur V 12,�17,�19,�21(flat),�22

Kornet/cornet V 1,�8,�12,�15,�17
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tempered tuning systems and inclusion of more mutation stops is giving  
new life particularly to contrapuntal music.

Often, ranks which speak an octave below the foundation pitch of 8 
(manuals) and below the foundation pitch of 16 (pedals) are provided, par-
ticularly on large instruments. Thus a 16 bourdon, double open diapason 
or double trumpet might be found on a manual, and a 32 contra open bass 
or double open diapason might be found on the pedals. Extremely occa-
sionally, stops which sound two octaves below might be found, such as a 
32 contra violone on a manual or a 64 gravissima or contra trombone on 
the pedals as found on the John Wanamaker organ in Philadelphia and the 
Centennial Hall in Sydney, respectively.

Higher members of the series are more rarely found on pipe organs. 
The septième and none are the most uncommon and are used to enhance 
“reedy” timbres. The tierce produces a particularly reedy timbre, and it is 
a stop commonly found on French organs. In order to give reasonable con-
trol to the build-up of organ loudness and timbre, pipes enhancing higher 
harmonics are grouped together in “mixture” stops. These consist of at 
least two ranks of pipes per note, each rank reinforcing a high member of 
the natural harmonic series. Table 5.3 gives a selection of typical mixture 
stops.

Mixture stops have another important role to play in the synthesis pro-
cess. If a chromatic scale is played on a mixture stop alone, the scale would 
not be continuous and jumps in pitch would be heard at approximately every 
octave or twelfth, keeping the overall frequency span of the mixture much 
narrower than the five octave range of a manual. In this way, the mixture 
adds brilliance to the overall sound by enhancing high harmonics at the bass 
end of the keyboard, but these would become inaudible (and the pipe length 
would be too short to be practical) if continued to the treble. A mixture IV 
might consist of 19, 22, 26, 29 from C1 to C2; 15, 19, 22, 26 from C2 to 
C3; 12, 15, 19, 22 from C3 to C4; 8, 12, 15, 19 from C4 to C5; and 8, 12, 
15, 15 from C5 to C6. The values in the table show the typical content at 
the bass end for each mixture stop in terms of their intervals to the first har-
monic expressed as note numbers of the major scale. A mixture such as the 
“pedal mixtur” shown in the table would produce a strongly reed-like sound 
due to the presence of the flattened twenty-first (the seventh harmonic).

The sesquialtera and terzian are mainly used to synthesize solo stops, 
since each contains a tierce (fifth harmonic). The cornet is also usually 
used as a solo stop, and is particularly associated with “cornet voluntaries.” 
When it is not provided as a stop in its own right, it can be synthesized (if 
the stops are available) using: 8, 4, 22

3 , 2 and 13
5 , or 8, 4, 2 and 

sesquialtera.
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5.5  DeCeiviNg the ear

This section concerns sounds which in some sense could be said to “deceive” 
the ear. Such sounds have a psychoacoustic realization which is not what 
might be expected from knowledge of their acoustic components. In other 
words, the subjective and objective realizations of sounds cannot be always 
directly matched up. While some of the examples given may be of no obvious 
musical use to the performer or composer, they may in the future find musi-
cal application in electronically produced music for particular musical effects 
where control over the acoustic components of the output sound is exact.

5.5.1  perception of pure tones
When two pure tones are played simultaneously, they are not always per-
ceived as two separate pure tones. The discussion relating to Figure 2.7 
introducing critical bandwidth in Chapter 2 provides a first example of 
sounds which in some sense deceive the ear. These two pure tones are only 
perceived as separate pure tones when their frequency difference is greater 
than the critical bandwidth. Otherwise they are perceived as a single fused 
tone which is “rough” or as beats depending on the frequency difference 
between the two pure tones.

When two pure tones are heard together, other tones with frequen-
cies lower than the frequencies of either of the two pure tones themselves 
may be heard also. These lower tones are not acoustically present in the 
stimulating signal and they occur as a result of the stimulus consisting of a 
“combination” of at least two pure tones; they are known as “combination 
tones.” The frequency of one such combination tone which is usually quite 
easily perceived is the difference (higher minus the lower) between the fre-
quencies of the two tones; this is known as the “difference tone”:

 f f fd h  1  (5.2)
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Notice that this is the beat frequency when the frequency difference is 
less than approximately 12.5 Hz (see Chapter 2). The frequencies of other 
possible combination tones that can result from two pure tones sounding 
simultaneously can be calculated as follows:
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These tones are always below the frequency of the lower pure tone, and 
occur at integer multiples of the difference tone frequency below the lower 
tone. No listeners hear all and some hear none of these combination tones. 
The difference tone and the combination tones for n  1 and n  2, known 
as the “second-order difference tone” and the “third-order difference tone,” 
are those that are perceived most readily (e.g., Rasch and Plomp, 1982).

When the two pure tone frequencies are both themselves adjacent har-
monics of some f0 (in Example 5.2 the tones are the 11th and 12th har-
monics of 100 Hz), then the difference tone is equal to f0 and the other 
combination tones form “missing” members of the harmonic series. When 
the two tones are not members of a harmonic series, the combination tones 
have no equivalent f0, but they will be equally spaced in frequency.

Combination tones are perceived quite easily when two musical instru-
ments produce fairly pure tone outputs, such as the descant recorder, 
baroque flute or piccolo, whose f0 values are high and close in frequency.

When the two notes played are themselves both exact and adjacent 
members of the harmonic series formed on their difference tone, the com-
bination tones will be consecutive members of the harmonic series adja-
cent and below the lower played note (i.e., the f0 values of both notes and 
their combination tones would be exact integer multiples of the difference 
frequency between the notes themselves). The musical relationship of com-
bination tones to notes played therefore depends on the tuning system in 
use. Two notes played using a tuning system which results in the interval 

example 5.2

Calculate the difference tone and first four combination tones which occur when 
pure tones of 1200 hz and 1100 hz sound simultaneously.
Equation�5.2�gives�the�difference�tone�frequency��fh����fl��1200��1100��100�Hz.

Equation�5.3�gives�combination�tone�frequencies,�and�the�first�four�are�for�n��1,�2,�
3�and�4.

for�n��1:���f(1)��1100��(1�*�100)��1000�Hz
for�n��2:���f(2)��1100��(2�*�100)��900�Hz
for�n��3:���f(3)��1100��(3�*�100)��800�Hz
for�n��4:���f(4)��1100��(4�*�100)��700�Hz
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between the notes never being pure, such as the equal tempered system, 
will produce combination tones which are close but not exact harmonics of 
the series formed on the difference tone.

These combination tones would beat with the f0 component of any other 
instruments in an ensemble playing a note close to a combination tone. 
This will not be as marked as it might appear at first, due to an effect 
known as “masking,” which is described in the next section.

5.5.2  masking of one sound by another
When we listen to music, it is very rare that it consists of just a single pure 
tone. While it is possible and relatively simple to arrange to listen to a pure 
tone of a particular frequency in a laboratory, or by means of an electronic 
synthesizer (a useful, important and valuable experience), such a sound 
would not sustain any prolonged musical interest. Almost every sound we 
hear in music consists of at least two frequency components.

When two or more pure tones are heard together an effect known as 
“masking” can occur, where each individual tone can become more diffi-
cult or impossible to perceive, or it is partially or completely “masked,” due 
to the presence of another tone. In such a case the tone which causes the 
masking is known as the “masker” and the tone which is masked is known 
as the “maskee.” These tones could be individual pure tones, but, given the 
rarity of such sounds in music, they are more likely to be individual fre-
quency components of a note played on one instrument which mask either 
other components in that note, or frequency components of another note. 

example 5.3

if two descant recorders are playing the notes a5 and b5 simultaneously in equal 
tempered tuning, which notes on the equal tempered scale are closest to the most 
readily perceived combination tones?
The�most�readily�perceived�combination�tones�are�the�difference�tone�and�the�combina-
tion�tones�for�n��1�and�n��2� in�Equation�5.3.�Equal� tempered�f0�values�for�notes�are�
given�in�Figure�3.21.�Thus�A5�has�an�f0�of�880.0�Hz�and�for�B5,�f0��987.8�Hz.

The� difference� tone� frequency��987.8��880.0��107.8�Hz;� closest� note� is� A2�
(f0��110.0�Hz).

The�combination�tones�are:
for�n��1:�880.0��107.8��772.2�Hz;�closest�note�is�G5�(f0��784.0�Hz)
for�n��2:�880.0��215.6��664.4�Hz;�closest�note�is�E5�(f0��659.3�Hz)
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The extent to which masking occurs depends on the frequencies of the 
masker and maskee and their amplitudes.

As is the case with most psychoacoustic investigations, masking is usu-
ally discussed in terms of the masking effect one pure tone can have on 
another, and the result is extended to complex sounds by considering the 
masking effect in relation to individual components. (This is similar, for 
example, to the approach adopted in the section on consonance and disso-
nance in Chapter 3, Section 3.3.2.) In psychoacoustic terms, the threshold 
of hearing of the maskee is shifted when in the presence of the masker. 
This provides the basis upon which masking can be quantified as the shift 
of a listener’s threshold of hearing curve when a masker is present.

The dependence of masking on the frequencies of masker and maskee 
can be illustrated by reference to Figure 2.9 in which an idealized frequency 
response curve for an auditory filter is plotted. The filter will respond to 
components in the input acoustic signal which fall within its response 
curve, whose bandwidth is given by the critical bandwidth for the filter’s 
center frequency. The filter will respond to components in the input whose 
frequencies are lower than its center frequency to a greater degree than 
components which are higher in frequency than the center frequency due 
to the asymmetry of the response curve.

Masking can be thought of as the filter’s 
effectiveness in analyzing a component at its 
center frequency (maskee) being reduced to 
some degree by the presence of another com-
ponent (masker) whose frequency falls within 
the filter’s response curve. The degree to 
which the filter’s effectiveness is reduced is 
usually measured as a shift in hearing thresh-
old, or “masking level,” as illustrated in Figure 
5.9(a). The figure shows that the asymmetry 
of the response curve results in the masking 
effect being considerably greater for maskees 
which are above rather than those below the 
frequency of the masker. This effect is often 
referred to as:

n the upward spread of masking; or
n low masks high.

The dependence of masking on the amplitudes 
of masker and maskee is illustrated in Figure 
5.9(b) in which idealized masking level curves 
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figure 5.9  (a) Idealized masking level to illustrate the “low 
masks high,” or “upward spread of masking effect” for a masker 
of frequency fmasker Hz. (b) Idealized change in masking level with 
different levels of masker of frequency fmasker Hz.
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are plotted for different amplitude levels of a masker of frequency fmasker. At 
low amplitude levels, the masking effect tends to be similar for frequencies 
above and below fmasker. As the amplitude of the masker is raised, the low 
masks high effect increases and the resulting masking level curve becomes 
increasingly asymmetric. Thus the masking effect is highly dependent on 
the amplitude of the masker. This effect is illustrated in Figure 5.10, which 
is taken from Sundberg (1991). The frequency scale in this figure is plot-
ted such that each critical bandwidth occupies the same distance. Sundberg 
summarizes this figure in terms of a three straight-line approximation to 
the threshold of hearing in the presence of the masker, or “masked thresh-
old,” as follows:

n the masked threshold above the critical band in which the masker 
falls off at about 5–13 dB per critical band;

n the masked threshold in the critical band in which the masker falls, 
approximately 20 dB below the level of the masker itself;

n the masked threshold below the critical band in which the masker 
falls off considerably more steeply than it does above the critical band 
in which the masker falls.

The masking effect of individual components in musical sounds, which are 
complex with many spectral components, can be determined in terms of 
the masking effect of individual components on other components in the 
sound. If a component is completely masked by another component in the 
sound, the masked component makes no contribution to the perceived 
nature of the sound itself and is therefore effectively ignored. If the masker 
is broadband noise, or “white noise,” then components at all frequencies 
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figure 5.10
Idealized masked 
thresholds for masker pure 
tones at 300 Hz, 350 Hz 
and 400 Hz at 50 dBSPL, 
70 dBSPL and 90 dBSPL 
respectively, plotted on 
a critical band spaced 
frequency scale. (From 
Sundberg, 1991.)
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are masked in an essentially linear fash-
ion (i.e., a 10 dB increase in the level of the 
noise increases the masking effect by 10 dB 
at all frequencies). This can be the case, for 
example, with background noise or a brushed 
snare drum (see Figure 3.6) which has spectral 
energy generally spread over a wide frequency 
range which can mask components of other 
sounds that fall within that frequency range.

The masking effects considered so far are 
known as “simultaneous masking” because the 
masking effect on the maskee by the masker 
occurs when both sound together (or simul-
taneously). Two further masking effects are 
important for the perception of music where 
the masker and maskee are not sounding 
together; these are referred to as “non-simultaneous masking.” These are 
“forward masking” or “post-masking,” and “backward masking” or pre-mask-
ing. In forward masking, a pure tone masker can mask another tone (maskee) 
which starts after the masker itself has ceased to sound. In other words the 
masking effect is “forward” in time from the masker to the maskee. Forward 
masking can occur for time intervals between the end of the masker and the 
start of the maskee of up to approximately 30 ms. In backward masking a 
maskee can be masked by a masker which follows it in time, starting up to 
approximately 10 ms after the maskee itself has ended. It should be noted, 
however, that considerable variation exists between listeners in terms of the 
time intervals over which forward and backward masking takes place.

Simultaneous and non-simultaneous masking are summarized in an 
idealized graphical format in Figure 5.11, which gives an indication of 
the masking effect in the time domain. The instant at which the masker 
starts and stops is indicated at the bottom of the figure, and it is assumed 
that the simultaneous masking effect is such that the threshold is raised 
by 50 dB. The potential spreading in time of masking as non-simultaneous 
pre- and post-masking effects is also shown. Moore (1996) makes the fol-
lowing observations about non-simultaneous masking:

n  Backward masking is considerably lessened (to zero in some cases) 
with practice.

n  Recovery rate from forward masking is greater at higher masking levels.
n  The forward masking effect disappears 100–200 ms after the masker 

ceases.
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figure 5.11  Idealized illustration of simultaneous and non-
simultaneous masking.
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n The forward masking effect increases for masker durations up to 
about 50 ms.

Masking is exploited practically in digital systems that store and transmit 
digital audio in order to reduce the amount of information that has to be 
handled, and therefore reduces the transmission resource, or bandwidth, 
and memory, hard disk or other storage medium required. Such systems are 
generally referred to as “perceptual coders” because they exploit knowledge 
of human perception. For example, perceptual coding is the operating basis 
of MP3 systems. It is also used to transmit music over the Internet, in MP3 
players that store many hours of such music in a pocket-sized device, in 
multi-channel sound in digital audio broadcasting and in satellite television 
systems, MiniDisk recorders (Maes, 1996), and the now obsolete digital 
compact cassette (DCC). Audio coding systems are discussed in more detail 
in Chapter 7.

Demonstrations of masking effects are available on the CD recording of 
Houtsma et al. (1987).

5.5.3  Note grouping illusions
There are some situations when the perceived sound is unexpected, as a 
result of either what amounts to an acoustic illusion or the way in which 
the human hearing system analyzes sounds. While some of these sounds 
will not be found in traditional musical performances using acoustic 
instruments, since they can only be generated electronically, some of the 
effects have a bearing on how music is performed. The nature of the illu-
sion and its relationship with the acoustic input which produced it can 
give rise to new theories of how sound is perceived, and, in some cases, 
the effect might have already or could in the future be used in the perfor-
mance of music.

Diana Deutsch describes a number of note grouping acoustic illusions, 
some of which are summarized below with an indication of their manifes-
tation in music perception and/or performance. Deutsch (1974) describes 
an “octave illusion” in which a sequence of two tones an octave apart with 
high (800 Hz) and low (400 Hz) f0 values are alternated between the ears as 
illustrated in the upper part of Figure 5.12.

Most listeners report hearing a high tone in the right ear alternating 
with a low tone in the left ear as illustrated in the figure, no matter which 
way round the headphones are placed. She further notes that right-handed 
listeners tend to report hearing the high tone in the right ear alternating 
with a low tone in the left ear, while left-handed listeners tend to hear a 
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high tone alternating with a low tone but it is equally likely that the high 
tone is heard in the left or right ear. This illusion persists when the stimuli 
are played over loudspeakers. This stimulus is available on the CD record-
ing of Houtsma et al. (1987).

In a further experiment Deutsch (1975) played an ascending and 
descending C major scale simultaneously with alternate notes being 
switched between the two ears as shown in the lower part of Figure 5.12. 
The most commonly perceived response is also shown in the figure. Once 
again the high notes tend to be heard in the right ear and the low notes in 
the left ear, resulting in a snippet of a C major scale being heard in each ear. 
Such effects are known as “grouping” or “streaming” and by way of expla-
nation, Deutsch invokes some of the grouping principles of the “Gestalt 
school” of psychology known as “good continuation,” “proximity” and 
“similarity.” She describes these as follows (Deutsch, 1982):

n Grouping by good continuation: “Elements that follow each other in“Elements that follow each other in 
a given direction are perceived as blending together.”

n Grouping by proximity: “Nearer elements are grouped together in“Nearer elements are grouped together in 
preference to elements that are spaced farther apart.”

n Grouping by similarity: “Like elements are grouped together.”“Like elements are grouped together.”

In each case the “elements” referred to are the individual notes in these 
stimuli. Applying these principles to the stimuli shown in the figure, 
Deutsch suggests that the principle of proximity is important, grouping 
the higher tones (and lower tones) together, rather than good continuation, 
which would suggest that complete ascending and/or descending scales of C  
major would be perceived. Deutsch (1982) describes other experiments 
which support this view.
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figure 5.12
A schematic representation 
of the stimulus for, and 
most common response 
to, the “octave illusion” 
(upper) described by 
Deutsch (1974), and scale 
illusion (lower) described 
by Deutsch (1975).
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Music in which grouping of notes together by frequency proximity pro-
duces the sensation of a number of parts being played, even though only a 
single line of music is being performed, includes works for solo instruments 
such as the Partitas and Sonatas for solo violin by J. S. Bach. An example of 
this effect is shown in Figure 5.13 from the Preludio from Partita number III  
in E major for solo violin by J. S. Bach (track 66 on the accompanying CD). 
The score (upper stave) and three parts usually perceived (lower stave) are 
shown, where the perceived parts are grouped by frequency proximity.

The rather extraordinary string part writing in the final movement of 
Tchaikovsky’s 6th symphony in the passage shown in Figure 5.14 is also often 

figure 5.13
Bars 45 to 50 of the 
Preludio from Partita III 
in E major for solo violin 
by J. S. Bach showing the 
notes scored for the violin 
(upper stave) and the three 
parts normally perceived 
by streaming (lower three 
staves).
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noted in this context because it is generally perceived as the four-part passage 
shown (track 67 on the accompanying CD). This can again be explained by 
the principle of grouping by frequency proximity. The effect would have been 
heard in terms of stereo listening by audiences of the day, since the strings 
were then positioned in the following order (audience view from left to right)dience view from left to right)ience view from left to right):  
first violins, double basses, cellos, violas and second violins. This is as 
opposed to the more common arrangement today (audience view from left todience view from left toience view from left to 
right): first violins, second violins, violas, double basses and cellos.

Other illusions can be produced which are based on timbral proximity 
streaming. Pierce (1992) describes an experiment “described in 1978 by 
David L. Wessel” and illustrated in Figure 5.15. In this experiment the ris-
ing arpeggio shown as response (A) is perceived as expected for stimulus  

figure 5.14
Snippet of the final 
movement of Tchaikovsky’s 
6th symphony showing the 
notes scored for the strings 
and the four parts normally 
perceived.
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(A) when all the note timbres are the same. However, the response changes 
to two separate falling arpeggii, shown as response (B), if note timbres are 
alternated between two timbres represented by the different notehead shapes, 
and “the difference in timbres is increased” as shown for stimulus (B).  
This is described as timbral streaming (e.g., Bregman, 1990).

A variation on this effect is shown in Figure 5.16 in which the pattern 
of notes shown is produced with four different timbres represented by the 
different notehead shapes. (This forms the basis of one of our laboratory 
exercises for music technology students.) The score is repeated indefinitely 
and the speed can be varied. Ascending or descending scales are perceived 
depending on the speed at which this sequence is played. For slow speeds 
(less than one note per second) an ascending sequence of scales is per-
ceived (stave B in the figure). The streaming is based on “note order.” When 
the speed is increased, for example to greater than 10 notes per second, a 
descending sequence of scales of different timbres is perceived (staves C–F 
in the figure). The streaming is based on timbre. The ear can switch from 
one descending stream to another between those shown in staves (C–F) in 
the figure by concentrating on another timbre in the stimulus.

The finding that the majority of listeners to the stimuli shown in  
Figure 5.12 hear the high notes in the right ear and the low notes in the left 
ear may have some bearing on the natural layout of groups of performing 
musicians. For example, a string quartet will usually play with the cellist 
sitting on the left of the viola player who is sitting on the left of the second 
violinist, who in turn is sitting on the left of the first violinist as illustrated 
in Figure 5.17. This means that each player has the instruments playing 
parts lower than their own on their left-hand side, and those instruments 
playing higher parts on their right-hand side.

Vocal groups tend to organize themselves such that the sopranos are on 
the right of the altos, and the tenors are on the right of the basses if they 

A B

Stimulus

Response

figure  5.15  Stimulus and usually perceived responses for Wessel’s timbral streaming 
experiment described by Pierce (1992). Different timbres in (B) are represented by the noteheads and 
plus signs. 
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are in two or more rows. Small vocal groups such as a quartet consisting 
of a soprano, alto, tenor and bass will tend to be in a line with the bass on 
the left and the soprano on the right. In orchestras, the treble instruments 
tend to be placed with the highest pitched instruments within their sec-
tion (first violin, piccolo, trumpet, etc.) on the left and bass instruments 
on the right. Such layouts have become traditional and moving players or 
singers around such that they are not in this physical position with respect 
to other instruments or singers is not welcomed. This tradition of musical 
performance layout may well be in part due to a right-ear preference for the 
higher notes.

However, while this may work well for the performers, it is back-to-
front for the audience. When an audience faces a stage to watch a live per-
formance (see Figure 5.17), the instruments or singers producing the treble 
notes are on the left and the bass instruments or singers are on the right. 
This is the wrong way round in terms of the right-ear treble preference, 
but the correct way round for observing the performers themselves. It is 
interesting to compare the normal concert hall layout as a listener with the 
experience of sitting in the audience area behind the orchestra, which is 

A

B

C

D

E

F

figure 5.16
Stimuli (stave A) used in 
timbre and note-order 
streaming experiment in 
which notehead shapes 
represent different timbres. 
At low speeds, note-order 
streaming is perceived 
(stave B), and at higher 
speeds timbre streaming is 
perceived (staves C–F).
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possible in halls such as the Royal Festival Hall in London. Unfortunately 
this is not a test that can be carried out very satisfactorily since it is not 
usually possible to sit far enough behind the players to gain as good an 
overall balance as can be obtained from the auditorium in front of the 
orchestra. It is, however, possible to experience this effect by turning round 
when listening to a good stereo recording over loudspeakers or by reversing 
the left and right channels.

5.5.4  pitch illusions
A pitch illusion, which has been compared with the continuous staircase 
pictures of Maurits Escher, has been demonstrated by Shepherd (1964) and 
is often referred to as a “Shepherd tone.” This illusion produces the sensa-
tion of an endless scale which ascends in semitone steps. After 12 semi-
tone steps when the pitch has risen by one octave, the spectrum is identical 
to the starting spectrum so the scale ascends but never climbs acoustically 
more than one octave. This stimulus is available on the CD recording of 

figure 5.17
Traditional performer 
and audience layout in a 
concert situation showing 
treble/bass bias in the ears 
of performers and listeners.
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Houtsma et al. (1987) (and as tracks 68 and 69 on the accompanying CD). 
Figure 5.18 illustrates the spectral nature of the Shepherd tone stimuli. 
Only the fundamental and harmonics which are multiple octaves above the 
fundamental are employed in the stimuli. The component frequencies of 
the Shepherd tone can be represented as:
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The amplitudes of the components are constrained within the curved enve-
lope shown. Each time the tone moves up one semitone, the partials all 
move up by a twelfth of an octave, or one semitone. The upper harmonics 
become weaker and eventually disappear and new lower harmonics appear 
and become stronger.

A musical example relating to the Shepherd tone effect in which some 
pitch ambiguity is perceived by some listeners can be found in the pedal 
line starting at bar 31 of the Fantasia in G minor (BWV 542) for organ by  
J. S. Bach (consider tracks 70–72 on the accompanying CD). These bars are 
reproduced in Figure 5.19 as an organ score in which the lower of the three 
staves is played on the pedals while the upper two staves are played with 
the left and right hands.

The pedal line consists of a sequence of five descending scales with 
eight notes in each except the last. Each scale ends with an upward leap 
of a minor seventh and the exact moment where the upward leap occurs is 
often perceived with some ambiguity, even when listeners have the score in 
front of them. The strength of this effect depends on the particular stops 
used. This ambiguity is particularly common amongst listeners in the third 
bar of the extract where the upward leap is often very strongly perceived as 
occurring one or even two notes later. This could be due to the entry of a 
new part in the left hand playing F3 which starts as the pedal part jumps 
up to written B3. (Reference to “written” B3 is made since the 16 rank 
provides the fundamental on the pedals which sounds an octave lower than 
written pitch as discussed in Section 5.4.)

figure 5.19
An extract from bar 31 of 
the Fantasia in G minor 
(BWV 542) for organ  
by J. S. Bach.
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The f0 components of these two notes, i.e., F3 and B2, form the sec-
ond and third harmonics of B1, which would have been the next sounding 
note of the pedal descending scale had it not jumped up an octave. At all 
the upward leaps in the descending pedal scales the chord in the manual 
part changes from minor to major.

In bar 32 the left hand change from E to E natural adds a member of the 
harmonic series (see Figure 3.3) of what would have been the next note (writ-
ten C3) in the pedal scale had it not risen up the octave. E is not a member of 
that harmonic series. The case is similar for the D natural in the right hand in 
the third bar of the extract with the entry of the left hand F3, and the left hand 
C natural in the fourth bar. These entries of notes which are members of the 
harmonic series of what would have been the next note in the descending pedal 
scale had it not jumped up the octave serve to provide the perceived ambiguity 
in definition as to the exact instant at which the upward leap occurs.

The illusion produced by the combination of organ pipes to produce a 
sensation of pitch lower than any note actually sounding is also used in 
organ pedal resultant bass stops. These sound at 32 (and very occasionally 
64), and their f0 values for bottom C are 16.25 Hz and 8.175 Hz respec-
tively. A resultant bass at 32 pitch is formed by sounding together stops  
of 16 and 102

3  which form the second and third harmonics of the  
32 harmonic series (see Section 5.4). A 32 stop perhaps labeled “acoustic 
bass” is a mutation stop of 102

3 , which when sounded with a 16 rank 
produces a perceived pitch at 32 (place theory of pitch perception from the 
second and third harmonics—see Chapter 3). A 64 stop perhaps labeled 
“resultant bass” works similarly, sounding a 22 1

3rank with a 32 rank.
The f0 value of the middle C of a 32 stop (C2) is 65.4 Hz and thus 

its bottom note is two octaves below this (C0) with an f0 of (654
4 ) or 

16.35 Hz. The f0 for the bottom note of a 64 stop (C–1) is 8.175 Hz, which 
is below the human hearing range but within the frequency range of dif-
ference frequencies that are perceived as beats (see Figure 2.6). Harmonics 
that are within the human hearing range will contribute to a perception 
of pitch at these f0 values which are themselves below the frequency range 
of the hearing system. Organists will sometimes play fifths in the pedals 
to imitate this effect, particularly on the last note of a piece. However, the 
effect is not as satisfactory as that obtained with a properly voiced resultant 
bass stop because the third harmonic (e.g., 102

3 ) should be softer than the 
second harmonic (16) for best effect.

Roederer (1975) describes an organ-based example to illustrate residue 
pitch, which constitutes a pitch illusion that is available as track 74 on the 
accompanying CD, while track 73 allows the chorale to be heard normally. 
The solo line of a chorale prelude, he suggests chorale number 40 from the 
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Orgelbuchlein by J. S. Bach, is played using a number of mutation stops 
(see Section 5.5) if available (e.g., 8, 4, 22

3 , 2, 13
5 ′ , 11

3 , 1) accompa-
nied by 8, 4 in the left hand and 16, 8 in the pedal.

A musically trained audience should be asked to track the pitch of the 
melody and warned that timbre changes will occur. After playing a short 
snippet, play some more without the 8, then without the 4, then without 
the 2, and finally without the 1. What remains in the solo part is only 
mutation stops (i.e., those with a non-unison or non-octave pitch relation-
ship to the fundamental). Roederer suggests making:

the audience aware of what was left in the upper voice and point 
out that the pitch of the written note was absent altogether (in any 
of its octaves)—they will find it hard to believe! A repetition of the 
experiment is likely to fail—because the audience will redirect their 
pitch processing strategies!

Experience shows that such an experiment relies on pitch context being 
established when using such stimuli, usually through the use of a known 
or continuing musical melody.

A musical illusion only works by virtue of establishing a strong expecta-
tion in the mind’s ear of the listener.
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6.1 aCOuStICS OF ENCLOSED SpaCES

In Chapter 1 the concept of a wave propagating without considering any 
boundaries was discussed. However, most music is listened to within a 
room, and is therefore influenced by the presence of boundaries, and so 
it is important to understand how sound propagates in such an enclosed 
space. Figure 6.1 shows an idealized room with a starting pistol and a lis-
tener; assume that at some time (t  0) the gun is fired. There are three 
main aspects to how the sound of a gun behaves in the room, which are as 
follows.

6.1.1 the direct sound
After a short delay the listener in the space will hear the sound of the start-
ing pistol, which will have traveled the shortest distance between it and the 
listener. The delay will be a function of the distance, as sound travels 344 
meters (1129 feet) per second or approximately 1 foot per millisecond. The 
shortest path between the starting pistol and the listener is the direct path, 
and therefore this is the first thing the listener hears. This component of 
the sound is called the direct sound, and its propagation path and associ-
ated time response are shown in Figure 6.2.

The direct component is important because it carries the information 
in the signal in an uncontaminated form. Therefore a high level of direct 
sound is required for a clear sound and good intelligibility of speech. The 
direct sound also behaves in the same way as sound in free space, because it 
has not yet interacted with any boundaries. This means that we can use the 
equation for the intensity of a free space wave some distance from the source 

Bang!

FIgurE 6.1 
An idealized room with an 
impulse excitation from a 
pistol.
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to calculate the intensity of the direct sound. The intensity of the direct 
sound is therefore given, from Chapter 1, by:

 
I
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r
direct sound

source
4 2π  

(6.1)
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Equation 6.1 shows that the intensity of the direct sound reduces as 
the square of the distance from the source, in the same way as a sound 
in free space. This has important consequences for listening to sound in 
real spaces. Let us calculate the sound intensity of the direct sound from a 
loudspeaker.
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Example 6.1 shows that the effect of distance on the direct sound intensity 
can be quite severe.

6.1.2 Early reflections
A little time later the listener will then hear sounds which have been 
reflected off one or more surfaces (walls, floor, etc.), as shown in Figure 6.3.  
These sounds are called early reflections and they are separated in both 
time and direction from the direct sound. These sounds will vary as the 
source or the listener moves within the space. We use these changes to 
give us information about both the size of the space and the position of 
the source in the space. If any of these reflections are very delayed, i.e., 
total path length difference longer than about 30 milliseconds (33 feet), 
then they will be perceived as echoes. Early reflections can cause inter-
ference effects, as discussed in Chapter 1, and these can both reduce the 
intelligibility of speech and cause unwanted timbre changes in music in 
the space.

The intensity levels of the early reflections are affected by both the dis-
tance and the surface from which they are reflected. In general most sur-
faces absorb some of the sound energy and so the reflection is weakened by 
the absorption. However, it is possible to have surfaces which “focus” the 
sound, as shown in Figure 6.4, and in these circumstances the intensity 
level at the listener will be enhanced.

ExaMpLE 6.1

a loudspeaker radiates a sound intensity level of 102 dB at 1 m. What is the 
sound intensity level (Idirect) of the direct sound at a distance of 4 m from the 
loudspeaker?
The sound intensity of the direct sound at a given distance can be calculated, using 
Equation 1.18 from Chapter 1, as:

IL
W

W
r  10 20 1110 10  dBsource

ref

log log ( )










As we already know the intensity level at 1 m this equation becomes:

I I rdirect sound m  ( ) 1 1020 log

which can be used to calculate the direct sound intensity as:

Idirect sound  dB  ( )  dB dB dB    102 20 4 102 12 9010log
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FIgurE 6.4 
A focusing surface.
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It is important to note, however, that the total power in the sound will 
have been reduced by the interaction with the surface. This means that 
there will be less sound intensity at other positions in the room. Also any 
focusing structure must be large when measured with respect to the sound 
wavelength, which tends to mean that these effects are more likely to hap-
pen for high-, rather than low-frequency components. In general therefore 
the level of direct reflections will be less than that which would be pre-
dicted by the inverse square law, due to surface absorption. Let us calculate 
the amplitude of an early reflection from a loudspeaker.

ExaMpLE 6.2

a loudspeaker radiates a peak sound intensity of 102 dB at 1 m. What is the 
sound intensity level (Ireflection), and delay relative to the direct sound, of an early 
reflection when the speaker is 1.5 m away from a hard reflecting wall and the 
listener is at a distance of 4 m in front of the loudspeaker?
The geometry of this arrangement is shown in Figure 6.5 and we can calculate the extra 
path length due to the reflection by considering the “image” of the loudspeaker, also 
shown in Figure 6.6, and by using Pythagoras’ theorem. This gives the path length as 5 m.

Given the intensity level at 1 m, the intensity of the early reflection can be calcu-
lated because the reflected wave will also suffer from an inverse square law reduction in 
amplitude:

 
I Iearly reflection m  (Path length) 1 1020 log

 
(6.2)

which can be used to calculate the direct sound intensity as:

Iearly reflection dB  ( ) dB dB dB    102 20 5 102 14 8810log

Comparing this with the earlier example we can see that the early reflection is 2 dB 
lower in intensity compared with the direct sound. The delay is simply calculated from the 
path length as:

Delay
Path length

 ms

 m

 ms
early reflection   

 344

5

344
14 5

1 1
.   ms

Similarly the delay of the direct sound is:

Delay
 ms

 m

 ms
 msdirect   

 

r

344

4

344
11 6

1 1
.

So the early reflection arrives at the listener 14.5 ms  11.6 ms  2.9 ms after the 
direct sound.
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FIgurE 6.5 A geometry for calculating the intensity of an early reflection.
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Because there is a direct correspondence between delay, distance from the 
source, and the reduction in intensity due to the inverse square law, we can plot 
all this on a common graph (see Figure 6.6), which shows the maximum bounds 
of the intensity level of reflections, provided there are no focusing effects.

6.1.3 the effect of absorption on early reflections
How does the absorption of sound affect the level of early reflections heard 
by the listener? The absorption coefficient of a material defines the amount 
of energy, or power, that is removed from the sound when it strikes it. 
In general the absorption coefficient of real materials will vary with fre-
quency, but for the moment we shall assume they do not. The amount of  
energy, or power, removed by a given area of absorbing material will depend 
on the energy, or power, per unit area striking it. As the sound intensity 
is a measure of the power per unit area this means that the intensity of  
the sound reflected is reduced in proportion to the absorption coefficient. 
That is:

 Intensity Intensity ( )reflected incident  1 α  (6.3)

where Intensity the sound intensity reflected aftreflected  eer absorption (in W m )

Intensity the sound intenincident





2

ssity before absorption (in W m )
and the absorption coe





2

α ffficient

Because a multiplication of sound levels is equivalent to adding the decibels 
together, as shown in Chapter 1, Equation 6.3 can be expressed directly in 
terms of the decibels as:

 I Iabsorbed incident  ( )  10 1log α  (6.4)

which can be combined with Equation 6.2 to give a means of calculating 
the intensity of an early reflection from an absorbing surface:

 
I Iearly reflection  m  (Path length)  ( )   1 1020 10 1log log α

 (6.5)

As an example consider the effect of an absorbing surface on the level of 
the early reflection level calculated earlier.
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6.1.4 the reverberant sound
At an even later time the sound has been reflected many times and is arriv-
ing at the listener from all directions, as shown in Figure 6.7. Because there 

Reverberation
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The reverberant sound in 
a room.

ExaMpLE 6.3

a loudspeaker radiates a peak sound intensity of 102 dB at 1 m. What is the 
sound intensity level (Iearly reflection) of an early reflection, when the speaker is 1.5 m 
away from a reflecting wall and the listener is at a distance of 4 m in front of the 
loudspeaker, and the wall has an absorption of 0.9, 0.69, 0.5?
As we already know the intensity level at 1 m, the intensity of the early reflection can be 
calculated using Equation 6.5 because the reflected wave also suffers from an inverse 
square law reduction in amplitude:

I Iearly reflection  m  (Path length)  ( )   1 1020 10 1log log α

The path length, from the earlier calculation, is 5 m so the sound intensity at the 
 listener for the three different absorption coefficients is:

Iearly reflection ( ) dB  ( m)  ( )α    0 9 10102 20 5 10 1 0 9. log log .
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dB  early reflection ( )I α . loog .

.

( ) dB dB dB

dBearly reflection ( )

1 0 69 88 5 83

88 100 5
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are so many possible reflection paths, each individual reflection is very close 
in time to its neighbors and thus there is a dense set of reflections arriving 
at the listener. This part of the sound is called reverberation and is desir-
able as it adds richness to, and supports, musical sounds. Reverberation 
also helps integrate all the sounds from an instrument so that a listener 
hears a sound which incorporates all the instruments’ sounds, including 
the directional parts. In fact we find rooms which have very little reverbera-
tion uncomfortable and generally do not like performing music in them; it 
is much more fun to sing in the bathroom compared with the living room 
(consider tracks 75–77 on the accompanying CD).

The time taken for reverberation to occur is a function of the size of 
the room and will be shorter for smaller rooms, due to the shorter time 
between reflections and the losses incurred on each impact with a sur-
face. In fact the time gap between the direct sound and reverberation is an 
important cue to the size of the space that the music is being performed 
in. Because some of the sound is absorbed at each reflection it dies away 
eventually. The time that it takes for the sound to die away is called the 
reverberation time and is dependent on both the size of the space and the 
amount of sound absorbed at each reflection. In fact there are three aspects 
of the reverberant field that the space affects (see Figure 6.8).
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n The increase of the reverberant field level: This is the initial portion 
of the reverberant field and is affected by the room size, which affects 
the time between reflections and therefore the time it takes the 
reverberant field to build-up. The amount of absorption in the room 
also affects the time that it takes the sound to get to its steady-state 
level. This is because, as shall be shown later, the steady-state level 
is inversely proportional to the amount of absorption in the room. 
As the rate at which sound builds up depends on the time between 
reflections and the absorption, the reverberant sound level will take 
more time to reach a louder level than reach a smaller one.

n The steady-state level of the reverberant field: If a steady tone, such 
as an organ note, is played in the space then after a period of time the 
reverberant sound will reach a constant level because at that point 
the sound power input balances the power lost by absorption in the 
space. This means that the steady-state level will be higher in rooms 
that have a small amount of absorption, compared with rooms that 
have a lot of absorption. Note that a transient sound in the space will 
not reach a steady-state level.

n The decay of the reverberant field level: When a tone in the space 
stops, or after a transient, the reverberant sound level will not reduce 
immediately but will instead decay at a rate determined by the 
amount of sound energy that is absorbed at each reflection. Thus in 
spaces with a small amount of absorption the reverberant field will 
take longer to decay.

Bigger spaces tend to have longer reverberation times and well-furnished 
spaces tend to have shorter reverberation times. Reverberation time can 
vary from about 0.2 of a second for a small well-furnished living room to 
about 10 seconds for a large glass and stone cathedral.

6.1.5 the behavior of the reverberant sound field
The reverberation part of the sound in a room behaves differently compared 
with the direct sound and early reflections from the perspective of the lis-
tener. The direct sound and early reflections follow the inverse square law, 
with the addition of absorption effects in the case of early reflections, and 
so their amplitude varies with position. However, the reverberant part of 
the sound largely remains constant with the position of the listener in the 
room. This is not due to the sound waves behaving differently from normal 
waves; instead it is due to the fact that the reverberant sound waves arrive 
at the listener from all directions.
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The result is that at any point in the room there are a large number 
of sound waves whose intensities are being added together. These sound 
waves have many different arrival times, directions and amplitudes because 
the sound waves are reflected back into the room, and so shuttle forward, 
backward and sideways around the room as they decay. The steady-state 
sound level, at a given point in the room, therefore is an integrated sum of 
all the sound intensities in the reverberant part of the sound, as shown in 
Figure 6.9. Because of this behavior the reverberant part of the sound in a 
room is often referred to as the “reverberant field.”

6.1.6 the balance of reverberant to direct sound
This behavior of the reverberant field has two consequences. Firstly, the 
balance between the direct and reverberant sounds will alter depending on 
the position of the listener relative to the source. This is due to the fact 
that the level of the reverberant field is independent of the position of the 
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listener with respect to the source, whereas the direct sound level is depen-
dent on the distance between the listener and the sound source. These 
effects are summarized in Figure 6.10, which shows the relative levels of 
direct to reverberant field as a function of distance from the source. This 
figure shows that there is a distance from the source at which the reverber-
ant field will begin to dominate the direct field from the source. The transi-
tion occurs when the two are equal and this point is known as the “critical 
distance.”

6.1.7 the level of the reverberant sound in the steady state
Secondly, because in the steady state the reverberant sound at any time 
instant is the sum of all the energy in the reverberation tail, the overall 
sound level is increased by reverberation. The level of the reverberation 
will depend on how fast the sound is absorbed in the room. A low level of 
absorption will result in sound that stays around in the room for longer 
and so will give a higher level of reverberant field. In fact, if the average 
level of absorption coefficient for the room is given by , the power level 
in the reverberant sound in a room can be calculated using the following 
equation:
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where the reverberant sound power (in W)

the
reverberantW

S



   total surface area in the room (in m )
the power Source

2

W  oof the source (in W)
and the average absorption coefficiα  eent in the room

Equation 6.6 is based on the fact that, at equilibrium, the rate of energy 
removal from the room will equal the energy put into its reverberant sound 
field. As the sound is absorbed when it hits the surface, it is absorbed at a 
rate which is proportional to the surface area times the average absorption, 
or S. This is similar to a leaky bucket being filled with water where the 
ultimate water level will be that at which the water runs out at the same 
rate as it flows in (see Figure 6.11.)

The amount of sound energy available for contribution to the rever-
berant field is also a function of the absorption because if there is a large 
amount of absorption then there will be less direct sound reflected off a 
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 surface to contribute to the reverberant field—remember that before the 
first reflection the sound is direct sound. The amount of sound energy 
available to contribute to the reverberant field is therefore proportional to 
the residual energy left after the first reflection, or (1  ) because  is 
absorbed at the first surface. The combination of these two effects gives 
(1  )/S— the term in Equation 6.6. The factor of four in Equation 6.6 
arises from the fact that sound is approaching the surfaces in the room 
from all possible directions.

An interesting result from Equation 6.6 is that it appears that the level 
of the reverberant field depends only on the total absorbing surface area. 
In other words it is independent of the volume of the room. However, in 
practice the surface area and volume are related because one encloses the 
other. In fact, because the surface area in a room becomes less as its vol-
ume decreases, the reverberant sound level becomes higher for a given aver-
age absorption coefficient in smaller rooms although the reverberation time 
in the smaller room will always be shorter. Another way of visualizing this 
is to realize that in a smaller room there is less volume for a given amount 
of sound energy to spread out in, like a pat of butter on a smaller piece 
of toast. Therefore the energy density, and thus the sound level, must be 
higher in smaller rooms. However, there are more impacts per second with 
the surface of a smaller room, which gives rise to the more rapid decay than 
in a larger room.

The term (1  )/S in Equation 6.6 is often inverted to give a quantity 
known as the room constant, R, which is given by:
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Using the room constant Equation 6.6 simply becomes:
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In terms of the sound power level this can be expressed as:
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As  is a number between 0 and 1 this also means that the level of the 
reverberant field will be greater in a room with a small surface area, 
compared with a larger room, for a given level of absorption coefficient. 
However, one must be careful in taking this result to extremes. A long and 
very thin cylinder will have a large surface area, but Equation 6.6 will not 
predict the reverberation level correctly because in this case the sound will 
not visit all the surfaces with equal probability. This will have the effect of 
modifying the average absorption coefficient and so will alter the prediction 
of Equation 6.6.

Therefore one must take note of an important assumption behind 
Equation 6.6 which is that the reverberant sound visits all surfaces with equal 
probability and from all possible directions. This is known as the “diffuse field 
assumption.” It can also be looked at as a definition of a diffuse field. In gen-
eral the assumption of a diffuse field is reasonable and it is usually a design 
goal for most acoustics. However, it is important to recognize that there are 
situations in which it breaks down, for example at low frequencies.

As an example consider the effect of different levels of absorption and 
surface area on the level of the reverberant field that might arise from the 
loudspeaker described earlier.

ExaMpLE 6.4

a loudspeaker radiates a peak sound intensity of 102 dB at 1 m. What is the sound 
pressure level of the reverberant field if the surface area of the room is 75 m2,  
and the average absorption coefficient is (a) 0.9 and (b) 0.2? What would be 
the effect of doubling the surface area in the room while keeping the average 
absorption the same?
From Equation 1.18 we can say:

SIL
W

W
r  10 20 1110 10  ( ) dBSource

ref

log log










Thus the sound power level (SWL) radiated by the loudspeaker is:
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The power in the reverberant field is given by:
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Clearly the level of the reverberant field is strongly affected by the level 
of average absorption. The first example would be typical of an extremely 
“dead” acoustic environment, as found in some studios, whereas the sec-
ond is typical of an average living room. The amount of loudspeaker energy 
required to produce a given volume in the room is clearly much greater, 

The room constant “R” for the two cases is:
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The level of the reverberant field can therefore be calculated from:
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The effect of doubling the surface area is to increase the room constant by the same 
proportion, so we can say that:

SWL
W

Wreverberant (S doubled)
Source

ref

  10 10log


























  

10
4

2

113 10
4

1

10

10

 

dB  

log

log

R

R
00

1
210 log







which gives:

SWL
Rreverberant (S doubled) dB  d  113 10
4

310log





 BB

Thus the effect of doubling the surface area is to reduce the level of the reverberant 
field by 3 dB in both cases.
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about 15 dB, in the first room compared with the second. If there is a 
 musician in the room then they will experience a “lift” in output due to the 
reverberant field in the room. Because of this musicians feel uncomfortable 
playing in rooms with a low level of reverberant field and prefer performing 
in rooms which help them in producing more output. This is also one of the 
reasons we prefer singing in the bathroom. However, where the quality con-
trol of a recording is the goal, many recording engineers need much shorter 
room decay times because room reverberation can mask low-level detail.

6.1.8 Calculating the critical distance
The reverberant field is, in most cases, diffuse, and therefore visits all parts 
of the room with equal probability. Also at any point, and at any instant, we 
hear the total power in the reverberant field, as discussed earlier. Because of 
this it is possible to equate the power in the reverberant field to the sound 
pressure level. Thus we can say:
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The distance at which the reverberant level equals the direct sound—the 
critical distance—can also be calculated using the above equations. At the  
critical distance the intensity due to the direct field and the power in  
the reverberant field at a given point are equal so we can equate Equation 
6.1 and Equation 6.8 to give:
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Which can be rearranged to give:
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Thus the critical distance is given by:
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(6.11)

Equation 6.11 shows that the critical distance is determined only by the 
room constant and the directivity of the sound source. Because the room 
constant is a function of the surface area of the room, the critical distance 
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will tend to increase with larger rooms. However, many of us listen to 
music in our living rooms so let us calculate the critical distance for a hi-fi 
loudspeaker in a living room.

ExaMpLE 6.5

What is the critical distance for a free-standing, omnidirectional, loudspeaker 
radiating into a room whose surface area is 75 m2, and whose average absorption 
coefficient is 0.2? What would be the effect of mounting the speaker into a wall?
The speaker is omnidirectional so the “Q” is equal to 1. The room constant “R” is the 
same as was found in the earlier example, 18.75 m2. Substituting both these values into 
Equation 6.11 gives:

r RQcritical distance  m ( cm)  0 141 0 141 18 75 1 0 61 61. . . .×

This is a very short distance! If the speaker is mounted in the wall the “Q” increases 
to 2, because the speaker can only radiate into 2  steradians; so the critical distance 
increases to:

r RQcritical distance m ( cm)   0 141 0 141 18 75 2 0 86 86. . . .

Which is still quite small!

As most people would be about 2 m away from their loudspeakers when 
they are listening to them this means that in a normal domestic setting the 
reverberant field is the most dominant source of sound energy from the hi-
fi, and not the direct sound. Therefore the quality of the reverberant field 
is an important aspect of the performance of any system which reproduces 
recorded music in the home. There is also an effect on speech intelligibility 
in a reverberant space as the direct sound is the major component of the 
sound which provides this.

The level of the reverberant field is a function of the average absorption 
coefficient in the room. Most real materials, such as carpets, curtains, 
sofas and wood paneling have an absorption coefficient which changes with 
frequency. This means that the reverberant field level will also vary with 
frequency, in some cases quite strongly. Therefore in order to hear music, 
recorded or otherwise, with good fidelity, it is important to have a rever-
berant field which has an appropriate frequency response. As seen in the 
previous chapter, one of the cues for sound timbre is the spectral content of 
the sound which is being heard, and this means that when the reverberant 
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29

field is dominant, as it is beyond the critical distance, it will determine 
the perceived timbre of the sound. This subject will be considered in more 
detail later in the chapter.

6.1.9 the effect of source directivity on the reverberant sound
There is an additional effect on the reverberation field, and that is the 
directivity of the source of sound in the room. Most hi-fi loudspeakers, and 
musical instruments, are omnidirectional at low frequencies but are not 
necessarily so at higher ones. As the level of the reverberant field is a func-
tion of both the average absorption and the directivity of the source, the 
variation in directivity of real musical sources will also have an effect on 
the reverberant sound field and hence the perception of the timbre of the 
sound. Consider the following example of a typical domestic hi-fi speaker 
in the living room considered earlier.

ExaMpLE 6.6

a hi-fi loudspeaker, with a flat-on axis, direct field, response, has a “Q” which 
varies from 1 to 25, and radiates a peak on axis sound intensity of 102 dB at 1 m. 
the surface area of the room is 75 m2, and the average absorption coefficient is 
0.2. Over what range does the sound pressure level of the reverberant field vary?
As the speaker has a flat-on axis response the intensity of the direct field given by 
Equation 6.1 should be constant. That is:
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should be constant. Therefore the sound power radiated by the loudspeaker can be 
calculated by rearranging Equation 6.12 to give:
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Equation 6.13 shows that in order to achieve a constant direct sound response the 
power radiated by the source must reduce as the “Q” increases. The power in the rever-
berant field is given by:
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The effect therefore of a directive source with constant on-axis response 
is to reduce the reverberant field as the “Q” gets higher. The subjective 
effect of this would be similar to reducing the high “Q” regions via the 
use of a tone control, which would not normally be acceptable as a sound 
quality.

A typical reverberant response of a typical domestic hi-fi speaker is 
shown in Figure 6.12. Note that the reverberant response tends to drop in 
both the midrange and high frequencies. This is due to the bass and tre-
ble speakers becoming more directive at the high ends of their frequency 
range. The dip in reverberant energy will make the speaker less “present” 
and may make sounds in this region harder to hear in the mix. The drop in 
reverberant field at the top end will make the speaker sound “duller.” Some 
manufacturers try to compensate for these effects by allowing the on-axis 

By combining Equations 6.13 and 6.14 the reverberant field due to the loudspeaker 
can be calculated as:
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which gives a level for the reverberant field as:

SWL
I

Ireverberant
directive source

ref

  10 10log










110 4 10

10
4

10 10

10

 ( )  

 

log log ( )

log

π 



Q

R








The room constant “R” is 18.75 m2, as calculated in Example 6.4.
The level of the reverberant field can therefore be calculated as:
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which gives:
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for the level of the reverberant field when the “Q” is equal to 1, and:
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when the “Q” is equal to 25.
Thus the reverberant field varies by 106.3  92.3  14 dB over the frequency range.
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response to rise in these regions; however, this brings other problems. The 
reduction in reverberant field with increasing “Q” is used to advantage in 
speech systems to raise the level of direct sound above the reverberant field 
and so improve the intelligibility.

However, in many professional recording studios’ control rooms, acous-
tic means are used to control the off-axis response irregularities and to 
cause a generally flat on-axis response, but such methods are often beyond 
the means of domestic listeners.

6.1.10 reverberation time
Another aspect of the reverberant field is that sound energy which enters it 
at a particular time dies away. This is because each time the sound inter-
acts with a surface in the room it loses some of its energy due to absorp-
tion. The time that it takes for sound at a given time to die away in a room 
is called the reverberation time. Reverberation time is an important aspect 
of sound behavior in a room. If the sound dies away very quickly we per-
ceive the room as being “dead” and we find that listening to, or producing, 
music within such a space is unrewarding. On the other hand when the 
sound dies away very slowly we perceive the room as being “live.” A live 
room is preferred to a dead room when it comes to listening to, or pro-
ducing, live music. On the other hand when listening to recorded music, 
which already has reverberation as part of the recording, a dead room is 
often preferred.
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The reverberant response 
of a domestic two-way high-
fidelity loudspeaker.
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However, as in many pleasurable aspects of life, reverberation must 
be taken in moderation. In fact the most appropriate length of reverbera-
tion time depends on the nature of the music being played. For example, 
fast pieces of contrapuntal music, like that of Scarlatti or Mozart, require 
a shorter reverberation time compared with large romantic works, like that 
of Wagner or Berlioz, to be enjoyed at their best. The most extreme rever-
beration times are often found in cathedrals, ice rinks, and railway stations 
and these acoustics can convert many musical events to “mush” yet to 
hear slow vocal polyphony, for example works by Palestrina, in a cathedral 
acoustic can be ravishing! This is because the composer has made use of 
the likely performance acoustic as part of the composition.

Because of the importance of reverberation time in the perception of 
music in a room, and because of the differing requirements for speech and 
different types of music, much effort is focused on it. In fact a major step 
in room acoustics occurred when Wallace Clement Sabine enumerated a 
means of calculating, and so predicting, the reverberation time of a room 
in 1898. Much design work on auditoria in the first half of this century 
focused almost exclusively on this one parameter, with some successes and 
some spectacular failures. Nowadays other acoustical and psychoacoustical 
factors are also taken into consideration.

6.1.11 Calculating and predicting reverberation time
Clearly the length of time that it takes for sound to die is a function not 
only of the absorption of the surfaces in a room, but also of the length of 
time between interactions with the surfaces of the room. We can use these 
facts to derive an equation for the reverberation time in a room. The first 
thing to determine is the average length of time that a sound wave will 
travel between interactions with the surfaces of the room. This can be 
found from the mean free path of the room which is a measure of the aver-
age distances between surfaces, assuming all possible angles of incidence 
and position. For an approximately rectangular box the mean free path is 
given by the following equation:
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The time between surface interactions may be simply calculated from 
Equation 6.15 by dividing it by the speed of sound to give:
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where the time between reflections (in s)

and the speed

τ 

c   of sound (in ms )1
 

Equation 6.16 gives us the time between surface interactions and at each of 
these interactions  is the proportion of the energy absorbed, where  is the 
average absorption coefficient discussed earlier. If  of the energy absorbed 
at the surface then (1  ) is the proportion of the energy reflected back to 
interact with further surfaces. At each surface a further proportion, , of 
energy will be removed so the proportion of the original sound energy that 
is reflected will reduce exponentially. The combination of the time between 
reflections and the exponential decay of the sound energy, through progres-
sive interactions with the surfaces of the room, can be used to derive an 
expression for the length of time that it would take for the initial energy to 
decay by a given ratio. (See Appendix 3 for details.)

There is an infinite number of possible ratios that could be used. 
However, the most commonly used ratio is that which corresponds to a 
decrease in sound energy of 60 dB, or 106. This gives an equation for the 
60 dB reverberation time, known as T60, which is, from Appendix 4:
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(6.17)

where the dB reverberation time (in s)T60 60  

Equation 6.17 is known as the “Norris–Eyring reverberation formula;” the 
negative sign in the top compensates for the negative sign that results from 
the natural logarithm resulting in a reverberation time which is positive. 
Note that it is possible to calculate the reverberation time for other ratios of 
decay and that the only difference between these and Equation 6.17 would 
be the value of the constant. The argument behind the derivation of rever-
beration time is a statistical one and so there are some important assump-
tions behind Equation 6.17. These assumptions are:

n that the sound visits all surfaces with equal probability, and at all 
possible angles of incidence. That is, the sound field is diffuse. This 
is required in order to invoke the concept of an average absorption 
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coefficient for the room. Note that this is a desirable acoustic goal for 
subjective reasons as well; we prefer to listen to and perform music in 
rooms with a diffuse field.

n that the concept of a mean free path is valid. Again this is required 
in order to have an average absorption coefficient, but in addition it 
means that the room’s shape must not be too extreme. This means 
that this analysis is not valid for rooms which resemble long tunnels. 
However, most real rooms are not too deviant and the mean free path 
equation is applicable.

6.1.12 the effect of room size on reverberation time
The result in Equation 6.17 also allows some broad generalizations to be 
made about the effect of the size of the room on the reverberation time, 
irrespective of the quantity of absorption present. Equation 6.17 shows 
that the reverberation time is a function of the surface area, which deter-
mines the total amount of absorption, and the volume, which determines 
the mean time between reflections in conjunction with the surface area. 
Consider the effect of altering the linear dimensions of the room on its vol-
ume and surface area. These clearly vary in the following way:

 V   (Linear dimension)∞ 3
 

and

 S  (Linear dimension)∞ 2
 

However, both the mean time between reflections, and hence the reverbera-
tion time, vary as:
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Hence as the room size increases the reverberation time increases propor-
tionally, if the average absorption remains unaltered. In typical rooms the 
absorption is due to architectural features such as carpets, curtains and 
people, and so tends to be a constant fraction of the surface area. The net 
result is that, in general, large rooms have a longer reverberation time than 
smaller ones and this is one of the cues we use to ascertain the size of a 
space, in addition to the initial time delay gap. Thus one often hears people 
referring to the sound of a “big” or “large” acoustic as opposed to a “small” 
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one when they are really referring to the reverberation time. Interestingly, 
now that it is possible to provide a long reverberation time in a small room, 
via electronic reverberation enhancement systems, with good quality, people 
have found that long reverberation times in a small room sound “wrong” 
because the visual cues contradict the audio ones. That is, the listener, on 
the basis of the apparent size of the space and their experience, expects a 
shorter reverberation time than they are hearing. Apparently closing one’s 
eyes restores the illusion by removing the distracting visual cue!

Let us use Equation 6.17 to calculate some reverberation times.

ExaMpLE 6.7

What is the reverberation time of a room whose surface area is 75 m2, whose 
volume is 42 m3, and whose average absorption coefficient is 0.9, 0.2? What 
would be the effect of doubling all the dimensions of the room while keeping the 
average absorption coefficients the same?
Using Equation 6.17 and substituting in the above values gives, for   0.9:
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which is very small! For   0.2 we get:

T
V

S60

30 161
1

0 161 42

75 1 0 2
0 43






 

 
  

. .

.
.

 ln( )
 m

 m  ln( )
s

2α

which would correspond well with the typical T60 of a living room, which is in fact 
what it is.

If the room dimensions are doubled then the ratio of volume with respect to the sur-
face area also doubles so the new reverberation times are given by:

V

S
doubled

doubled
doubled(Linear dimension)  2

so the old reverberation times are increased by a factor of 2:

T T60 60 2 doubled  

which gives a reverberation time of:

T T60 60 2 0 042 2 0 084 doubled  s    . .

when   0.9 and:

T T60 60 2 0 43 2 0 86 doubled  s    . .

when   0.2
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6.1.13 the problem of short reverberation times
The very short reverberation times that occur when the absorption is high 
pose an interesting problem. Remember that one of the assumptions behind 
the derivation of the reverberation time calculation was that the sound energy 
visited all the surfaces in the room with equal probability. For our example 
room the mean time between reflections, using Equation 6.16, is given by:
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If the reverberation time calculated in Example 6.7, when   0.9, is divided by 
the mean time between reflections then the average number of reflections that 
have occurred during the reverberation time can be calculated to be:
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These are barely enough reflections to have hit each surface once! In this 
situation the reverberant field does not really exist; instead the decay of 
sound in the room is really a series of early reflections to which the concept 
of reverberant field or reverberation does not really apply. In order to have a 
reverberant field there must be much more than six reflections. A suitable 
number of reflections, in order to have a reverberant field, might be nearer 
20, although this is clearly a hard boundary to accurately define. Many stu-
dios and control rooms have been treated so that they are very “dead” and 
so do not support a reverberant field.

6.1.14 a simpler reverberation time equation
Although the Norris–Eyring reverberation formula is often used to calcu-
late reverberation times there is a simpler formula known as the “Sabine 
formula,” named after its developer Wallace Clement Sabine, which is 
also often used. Although it was originally developed from considerations 
of average energy loss from a volume, a derivation which involves solving 
a simple differential equation, it is possible to derive it from the Norris–
Eyring reverberation formula. This also gives a useful insight into the con-
texts in which the Sabine formula can be reasonably applied. Consider the 
Norris–Eyring reverberation formula below:
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The main difficulty in applying this formula is due to the need to take 
the natural logarithm of (1  ). However, the natural logarithm can be 
expanded as an infinite series to give:

 

T
V

S
n

n60 2 3

0 161

2 3




     

.

α
α α α α

∞

∞

… …










 

(6.18)

Because   1 the sequence always converges. However, if   0.3 then the 
error due to all the terms greater than  is less than 5.7%. This means 
that Equation 6.18 can be approximated as:
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(6.19)

Equation 6.19 is known as the “Sabine reverberation formula” and, apart 
from being useful, was the first reverberation formula. It was developed on 
the basis of experimental measurements made by W. C. Sabine, thus initi-
ating the whole science of architectural acoustics. Equation 6.19 is much 
easier to use and gives accurate enough results provided the absorption, , 
is less than about 0.3. In many real rooms this is a reasonable assump-
tion. However, it becomes increasingly inaccurate as the average absorption 
increases and in the limit predicts a reverberation time when   1, that is 
reverberation without walls!

6.1.15 reverberation faults
As stated previously, the basic assumption behind these equations is that 
the reverberant field is statistically random, that is, a diffuse field. There 
are, however, acoustic situations in which this is not the case. Figure 6.13  
shows the decay of energy, in dB, as a function of time for an ideal diffuse 
field reverberation. In this case the decay is a smooth straight line repre-
senting an exponential decay of an equal number of dBs per second.

Figure 6.14 on the other hand shows two situations in which the rever-
berant field is no longer diffuse. In the first situation all the absorption is 
only on two surfaces, for example an office with acoustic tiles on the ceil-
ing, carpets on the floor, and nothing on the walls. Here the sound between 
the absorbing surfaces decays quickly whereas the sound between the walls 
decays much more slowly, due to the lower absorption. In the second case 
there are two connected spaces, such as the transept and nave in a church, 
or under the balconies in a concert hall. In this case the sound energy 
does not couple entirely between the two spaces and so they will decay at 
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 different rates that depend on the level of absorption in them. In both of 
these cases the result is a sound energy curve as a function of time which 
has two or more slopes, as shown in Figure 6.15. This curve arises because 
the faster decaying waves die away before the more slowly decaying ones 
and so allow them to dominate in the end.

The second major acoustical defect in reverberant decay occurs when 
there are two precisely parallel and smooth surfaces, as shown in Figure 6.16. 
This results in a series of rapidly spaced echoes, onomatopoeically called flut-
ter echoes, which result as the energy shuttles backward and forward between 
the two surfaces. These are most easily detected by clapping one’s hands 
between the parallel surfaces to provide the packet of sound energy to excite 
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the flutter echo. The decay of energy versus time in this situation is shown 
in Figure 6.17 and the presence of the flutter echo manifests itself as a series 
of peaks in the decay curve. Note that this behavior is also often associated 
with the double-slope decay characteristic shown in Figure 6.15 because the 
energy shuttling between the parallel surfaces suffers less absorption com-
pared with a diffuse sound.

6.1.16 reverberation time variation with frequency
Equations 6.17 and 6.18 show that the reverberation time depends on the 
volume, surface area, and the average absorption coefficient in the room. 
However, the absorption coefficients of real materials are not constant with 
frequency. This means that, assuming that the room’s volume and surface 
area are constant with frequency, which is not an unreasonable assump-
tion, the reverberation time in the room will also vary with frequency. This 
will subjectively alter the timbre of the sound in the room due to both the 
effect on the level of the reverberant field discussed earlier and the change 
in timbre as the sound in the room decays away.

As an extreme example, if a particular frequency has a much slower rate of 
decay compared with other frequencies, then, as the sound decays away, this 
frequency will ultimately dominate and the room will “ring” at that particular 
frequency. The sound power for steady-state sounds will also have a strong 
peak at that frequency because of the effect on the reverberant field level.

Table 6.1 shows some typical absorption coefficients for some typical 
materials which are used in rooms as a function of frequency. Note that 
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they are measured over octave bands. One could argue that third octave 
band measurements would be more appropriate psychoacoustically as the 
octave measurement will tend to blur variations within the octave, which 
might be perceptually noticeable. In many cases, because the absorption 
coefficient varies smoothly with frequency, octave measurements are suffi-
cient. However, especially when considering resonant structures, more reso-
lution would be helpful. Note also that there are often no measurements of 
the absorption coefficients below 125 Hz. This is due to both the difficulty 
in making such measurements and the fact that below 125 Hz other factors 
in the room become more important, as we shall see later.

In order to take account of the frequency variation of the absorption 
coefficients we must modify the equations used to calculate the reverbera-
tion time as follows:
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for the Sabine reverberation time equation.

table 6.1 Typical absorption coefficients as a function of frequency for various materials

Material Frequency

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz

Plaster on lath 0.14 0.10 0.06 0.05 0.04 0.03

Carpet on concrete 0.02 0.06 0.14 0.37 0.60 0.65

Floor (wood joist) 0.15 0.11 0.10 0.07 0.06 0.07

Painted plaster 0.01 0.01 0.02 0.02 0.02 0.02

Walls (½ inch plasterboard) 0.29 0.10 0.05 0.04 0.07 0.09

Windows (float glass) 0.35 0.25 0.18 0.12 0.07 0.04

Wood paneling 0.30 0.25 0.20 0.17 0.15 0.10

Curtains (cotton draped to  
half area)

0.07 0.31 0.49 0.81 0.66 0.54

Air absorption (per m3  
@ 20°C and 30% RH)

— — — — 0.012 0.038



CHaptEr 6: Hearing Music in Different Environments310
6.1.17 reverberation time calculation with mixed surfaces
In real rooms we must also allow for the presence of a variety of different 
materials, as well as accounting for their variation of absorption as a func-
tion of frequency. This is complicated by the fact that there will be different 
areas of material, with different absorption coefficients, and these will have 
to be combined in a way that accurately reflects their relative contribution. 
For example, a large area of a material with a low value of absorption coef-
ficient may well have more influence than a small area of material with 
more absorption.

In the Sabine equation this is easily done by multiplying the absorption 
coefficient of the material by its total area and then adding up the contribu-
tions from all the surfaces in the room. These resulted in a figure which 
Sabine called the “equivalent open window area”, as he assumed, and 
experimentally verified, that the absorption coefficient of an open window 
was equal to 1.

The denominator in the Sabine reverberation equation, Equation 6.19, 
is also equivalent to the open window area of the room, but has been cal-
culated using the average absorption coefficient in the room. It is therefore 
easy to incorporate the effects of different materials by simply calculat-
ing the total open window area for different materials, using the method 
described above, and substituting it for S in Equation 6.19. This gives a 
modified equation which allows for a variety of frequency-dependent mate-
rials in the room as:
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where ( ) absorption coefficient for a given material
and

iα f 

  its areaiS   

For the Norris–Eyring reverberation time equation the situation is a little 
more complicated because the equation does not use the open window area 
directly. However, the Norris–Eyring reverberation time equation can be 
rewritten in a modified form, as shown in Appendix 4, which allows for the 
variation in material absorption due to both nature and frequency, as:
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ExaMpLE 6.8

What is the 60 dB reverberation time (T60) of a living room as a function of frequency whose surface area 
is 75 m2 and whose volume is 42 m3? the floor is carpet on concrete, the ceiling is plaster on lath, and 
both have an area of 16.8 m2. there are 6 m2 of windows and the rest of the surfaces are painted plaster on 
brick; ignore the effect of the door.
Using the data in Table 6.1, set up a spreadsheet or table, as shown in Table 6.2, and calculate the equivalent open 
window area for each surface as a function of frequency. Having done that add up the individual surface contributions 
for each frequency band and apply Equation 6.20 to the result in order to calculate the reverberation time.

From the results shown in Table 6.2, which are also plotted in Figure 6.18, one can see that the reverberation 
varies from 1.49 seconds at low frequencies to 0.55 seconds at high frequencies. This is a normal result for such a 
structure and would tend to sound a bit “woolly” or “boomy.” The relative level of reverberant field for this room is also 
shown in Figure 6.19 and this shows approximately a 5 dB increase in the reverberant field at low frequencies.

Equation 6.21 is also known as the “Millington–Sette equation.” Although 
Equation 6.21 can be used irrespective of the absorption level it is still 
more complicated than the Sabine equation and, if the average absorption 
coefficient is less than 0.3, it can be approximated very effectively by it, as 
discussed previously. Thus in many contexts the Sabine equation, Equation 
6.20, is preferred.

Equation 6.20 is readily used in conjunction with tables of absorp-
tion coefficients to calculate the reverberation time and can be easily pro-
grammed into a spreadsheet. As an example, consider the reverberation 
time calculation for a living room outlined in Example 6.8.

table 6.2 Absorption and reverberation time calculations for an untreated living room

Surface (material) area (m2) Frequency

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz

Ceiling (plaster on lath) 16.8 2.35 1.68 1.01 0.84 0.67 0.50

Floor (carpet on concrete) 16.8 0.34 1.01 2.35 6.22 10.08 10.92

Walls (painted plaster) 35.4 0.35 0.35 0.71 0.71 0.71 0.71

Windows (float glass) 6.0 2.10 1.50 1.08 0.72 0.42 0.24

Total open window area 5.14 4.54 5.15 8.48 11.88 12.37

Room volume (m3) 42

Reverberation time (s) 1.32 1.49 1.31 0.80 0.57 0.55
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6.1.18 reverberation time design
The results of Example 6.8 beg the question: “How can we improve the 
evenness of the reverberation time?” The answer is to either add, or 
remove, additional absorbing materials into or from the room in order to 
achieve the desired reverberation characteristic. Here the concept of an 
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FIgurE 6.18 The reverberation time for the untreated room as a function of frequency.
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FIgurE 6.19 The reverberation field level for the untreated room as a function of frequency.
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ExaMpLE 6.9

Which single material could be added to the room in Example 6.8 which would result in an improved 
reverberation time, and what amount would be required to effect the improvement?
A material which has a high absorption at low frequencies, such as wood paneling, needs to be added to the room. 
If the absorption budget is set as being equivalent to the open window area at 4 kHz then we must achieve an open 
window area of 12.5 m over the whole frequency range. The worst frequency in the previous example is 250 Hz, which 
only has 4.5 m of open window area at that frequency. This means that any additional absorber must add 12.5  
4.5  8 m of open window area at that frequency. The absorption of wood paneling, from Table 6.1, at 250 Hz is 0.25. 
Therefore the amount of wood paneling required is:

Area
Required open window area

Absorption coefWood paneling 
fficient

 m
m 

8
0 25

32
.

Table 6.3, Figure 6.20 and Figure 6.21 show the effect of applying the treatment, which dramatically improves 
the reverberation time characteristics. The reverberation time now only varies from 0.59 to 0.41 s, which is a much 
smaller variation than before. The peak-to-peak variation in the level of the reverberant field has also been reduced to 
less than 2 dB.

open window area budget is useful. The idea is that, given the volume of 
the room, and the desired reverberation time, the necessary open win-
dow area required is calculated. The open window area already present in 
the room is then examined and, depending on whether the room is over 
or under budget, appropriate materials are added or removed. Consider 
Example 6.9 which tries to improve the reverberation of the previous room.

table 6.3 Absorption and reverberation time calculations for a treated living room

Surface (material) area (m2) Frequency

125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz

Ceiling (plaster on lath) 16.8 2.35 1.68 1.01 0.84 0.67 0.50

Floor (carpet on concrete) 16.8 0.34 1.01 2.35 6.22 10.08 10.92

Walls (painted plaster) 35.4 0.35 0.35 0.71 0.71 0.71 0.71

Windows (float glass) 6.0 2.10 1.50 1.08 0.72 0.42 0.24

Wood paneling 32.0 9.60 8.00 6.40 5.44 4.80 3.20

Total open window area 14.74 12.54 11.55 13.92 16.68 15.57

Room volume (m3) 42.0

Reverberation time (s) 0.46 0.54 0.59 0.49 0.41 0.43
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However, the overall reverberation time has gone down, especially at 
the lowest frequencies, because of the effect of the wood paneling at fre-
quencies other than the one being concentrated on. Thus in practice an 
iterative approach to deciding on the most suitable treatment for a room 
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FIgurE 6.20 The reverberation time for the treated room as a function of frequency.
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FIgurE 6.21 The reverberation field level for the treated room as a function of frequency.
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is often required. Another point to consider is that the treatment proposed 
only just fits in the room, and sometimes it proves impossible to achieve a 
desired reverberation characteristic due to physical limitations.

6.1.19 Ideal reverberation time characteristics
What is an ideal reverberation characteristic? We have seen that the decay 
should be a smooth exponential of a constant number of decibels of decay 
per unit time. We also know that different sorts of music require differ-
ent reverberation times. In many cases the answer is: “it depends on the 
situation.” However, there are a few general rules which seem to be broadly 
accepted.

Firstly, there is a range of reverberation times which are a function of 
the type of music being played; music with a high degree of articulation 
needs a drier acoustic than music which is slower and more harmonic. 
Secondly, as the performance space gets larger the reverberation time 
required for all types of music becomes longer. This result is summarized 
in Figure 6.22 which shows the “ideal” reverberation time as a function 
of both music and room volume. Thirdly, in general, listeners prefer a rise 
in reverberation time in the bass (125 Hz) of about 40% relative to the 
midrange (1 kHz) value as shown in Figure 6.23. This rise in bass rever-
beration adds “warmth” and it also helps increase the sound level of bass 
instruments, which often have weak fundamentals, by raising the level of 
the reverberant field at low frequencies. However, when recording musical 
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instruments, or when listening to recorded music, this bass lift due to the 
reverberant field may be undesirable and therefore a flat reverberation char-
acteristic is preferred.

There are many other aspects of reverberation, too numerous to mention 
here, which must be considered when designing acoustic spaces. However, 
there are four aspects that are worthy of mention as they have proved to be 
the downfall of more than one acoustic designer, or manufacturer, of rever-
beration units.

6.1.20 Early decay time
The first aspect is that the measure of reverberation time as being the time 
it takes the sound to fall by 60 dB is not particularly relevant psychoacousti-
cally; it is also very difficult to measure in situ. This is due to the presence 
of background noise, either unwanted or the music being played, which 
often results in less than 60 dB of energy decay before the decay sound 
becomes less than the residual noise in the environment. Even in the qui-
eter environment of a Victorian town in the days before road traffic, Sabine 
had to do measurements, using his ears, at night to avoid the results being 
affected by the level of background noise. Because we rarely hear a full 
reverberant decay, our ears and brains have adapted, quite logically, to focus 
on what can be heard. Thus we are more sensitive to the effects of the first 
20 to 30 dB of the reverberant decay curve.

In principle, provided we have an even exponential decay curve, the 
60 dB reverberation is directly proportional to the earlier curves and so this 

50%

75%

100%

125%

150%

100 1000 10 000
Frequency (in Hz)

Music studios

Concert halls

Studio control rooms

R
el

at
iv

e 
pe

rc
en

ta
ge

 r
ev

er
be

ra
tio

n 
tim

e

FIgurE 6.23  
The ideal reverberation 
time versus frequency 
curves.



3176.1 Acoustics of Enclosed Spaces
should not cause any problems. However, if the curve is of the double-slope 
form shown in Figure 6.15 then this simple relationship is broken. The net 
result is that, although the T60 reverberation time may be an appropriate 
value, because of the faster early decay to below 30 dB we perceive the 
reverberation as being shorter than it really is. The psychoacoustic effect 
of this is that the space sounds “drier” than one would expect from a sim-
ple measurement of T60. Modern acoustic designers therefore worry much 
more about the early decay time (EDT) than they used to when designing  
concert halls.

6.1.21 Lateral reflections
The second factor which has been found to be important for the listener 
is the presence of dense diffuse reflections from the side walls of a concert 
hall, called lateral reflections, as shown in Figure 6.24. The effect of these is 
to envelop or bathe the listener in sound and this has been found to be nec-
essary for the listener to experience maximum enjoyment from the sound. 
It is important that these reflections be diffuse, as specular reflections will 
result in disturbing comb filter effects, as discussed in Chapter 1, and dis-
tracting images of the sound sources in unwanted and unusual directions. 
Providing diffuse reflections is thus important and this has been recognized 
for some time. Traditionally, plaster mouldings, niches and other decorative 
surface irregularities have been used to provide diffusion in an ad hoc man-
ner. More recently diffusion structures based on patterns of wells whose 
depths are formally defined by an appropriate mathematical sequence have 
been proposed and used.

However, it is not just the provision of diffusion on the 
side walls that must be considered. The traditional concert 
hall is called a shoebox hall, because of its shape, as shown 
in Figure 6.25, and this naturally provides a large number of 
lateral reflections to the audience. This shape, combined with 
the Victorian penchant for florid plaster decoration, resulted in 
some excellent sounding spaces. Unfortunately shoebox halls 
are harder to make a profit with because they cannot seat as 
many people as some other structures.

Another popular structure, which has a different behavior 
as regards to lateral reflections, is the fan-shaped hall shown 
in Figure 6.26. This structure has the advantage of being able 
to seat more people with good sightlines but unfortunately it 
directs the lateral reflections away from the audience and those 
few that do arrive are very weak at the wider part of the fan. 

D
iffusing surface

FIgurE 6.24 Lateral reflections in a 
concert hall.
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The situation can be improved via the use of explicit diffusion structures 
on the walls, ceilings, and mid-air as floating shapes, as shown in Figure 
6.27. However, it has been found that the pseudo-lateral diffuse reflections 
from the ceiling are not quite comparable in effect to reflections from the 
side walls, and so the provision of a good listening environment within the 
realities of economics is still a challenge.

6.1.22 Early reflections and performer support
A third factor, which is often ignored, is the acoustics that the performers 
experience. Pop groups have known about this for years and take elaborate 
precautions to provide each performer on stage with their own individual 
balance of acoustic sounds via a technique known as “foldback.” In fact 
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some performers now receive their foldback directly into their ears via  
a technique known as “in-ear monitoring” and in many large gigs the 
equipment providing foldback to the performer can rival, or even exceed, 
that which provides the sound for the audience. The classical musician, 
however, only has the acoustics of the hall to provide them with “foldback.” 
Thus the musicians on the stage must rely on reflections from the nearby 
surfaces to provide them with the necessary sounds to enable them to hear 
themselves and each other.

There are two requirements for the sound reaching the performer on 
stage. It must be at a sufficient level, and arrive soon enough to be useful. 
To begin with it is important that the surfaces surrounding the perform-
ers direct some sound back to them. Note that there is a conflict between 
this and providing a maximum amount of sound to the audience so some 
compromise must be reached. The usual compromise is to make use of 
the sound which radiates behind the performers and direct it out to the 
audience via the performers, as shown in Figure 6.28. This has the twofold 
advantage of providing the performers with acoustic foldback and redirect-
ing sound energy that might have been lost back to the audience. Ideally 
the sound that is redirected back to the performers should be diffuse as 
this will blend the sounds of the different instruments together for all the  

Diffusing ceiling FIgurE 6.27 
Lateral reflections from 
ceiling diffusion in a 
concert hall.

FIgurE 6.28 
Early reflections to provide 
acoustic foldback for the 
performer.
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performers, as shown in Figure 6.29, whereas specular reflectors can have 
hot and cold spots for a given instrument on the stage.

An important aspect of acoustic foldback, however, is the time that 
it takes to arrive back at the performers. Ideally it should arrive immedi-
ately, and some does via the floor and direct sound from the instrument. 
However, the majority will have to travel to a reflecting or diffusing sur-
face and back to the performers. There is evidence to show that, in order 
to maintain good ensemble comfortably, the musicians should receive the 
sound from other musicians within about 20 ms of the sound being pro-
duced. This means that ideally there should be a reflecting or diffusing sur-
face within 10 ms (3.44 m or 11.5 ft) of the performer; the time is divided 
by 2 to allow for going to the reflecting surface and back. In practice some 
of the surfaces may have to be further away when large orchestral forces 
are being mustered, although the staging used can assist the provision of 
acoustic foldback. Sometimes, however, the orchestra enclosure is so large 
that the reflections arrive later than this. If they arrive later than about 50 
ms the musicians will perceive them as echoes and ignore them. On the 
other hand if these reflections arrive at the boundary between perceiving 
it as part of the sound or an echo of a previous sound it can cause severe 
 disruption of the performers’ perception of it.

The net effect of these “late early reflections” is to damage the per-
formers’ ability to hear other instruments close to them, and this further 
reduces their ability to maintain ensemble. In one prestigious hall, the rea-
son musicians used to complain that they couldn’t hear each other, and so 
hated playing there, was traced to the problem of late early reflections. As 
a postscript it is interesting to note that the orchestra enclosure in shoebox 
halls often did the right things. However, in modern multipurpose facili-
ties it is often a challenge to provide the necessary acoustic foldback while 
allowing space for scenery and machinery, etc.

Diffusing surfaceFIgurE 6.29 
The effect of diffusion on 
the acoustic foldback for 
the performer.
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6.1.23 the effect of air absorption
The fourth aspect of reverberation, which caught early reverberation unit 
designers by surprise, is the observation that, as well as suffering many 
reflections, the sound energy in a reverberant decay will have traveled 
through a lot of air. In fact the distance that the sound will have traveled 
will be directly proportional to the reverberation time, so a one second rever-
beration time implies that the sound will have traveled 344 m by the end 
of the decay. Although for low frequencies air absorbs a minimal amount of 
sound energy, at high frequencies this is not the case. In particular, humid-
ity, smoke particles and other impurities will absorb high-frequency energy 
and so reduce the level of high frequencies in the sound. This is one of  
the reasons why people sound duller when they are speaking at a distance.

In terms of reverberation time, and also the level of the reverber-
ant field, the effect of this extra absorption is to reduce the reverberation 
time, and the level of the reverberant field, at high frequencies. Fortunately 
this effect only becomes dominant at higher frequencies, above 2 kHz.
Unfortunately, though, it is dependent on the level of humidity and smoke 
in the venue and so the high-frequency reverberation time, and the rever-
berant field level, will change as the audience stays in the space. Note this 
is an additional dynamic effect over and above the static absorption simply 
due to the presence of a clothed person in a space and is due to the fact that 
people exhale water vapor and perspire. Clearly then the degree of change 
will be a function of both the physical exertions of the audience and the 
quality of the ventilation system!

As the effect of air absorption is determined by the distance the sound 
has traveled, rather than its interaction with a surface, it is difficult to incor-
porate the effect into the reverberation time equations discussed earlier. 
An approximation that seems to work is to convert the effect of the air 
 absorption into an equivalent absorption area by scaling an air absorption 
coefficient by the volume of the space. This is reasonable because as the vol-
ume of the room increases, the more air the wave must travel through and 
the longer the distance that it travels. This coefficient is shown at the bottom 
of Table 6.1 and from it one can see that for small rooms the effect can be 
ignored because until the volume becomes greater than 40 m3 the equivalent 
absorbing area is less than 1 m2. However, the effect does become significant 
if one is designing artificial reverberation units because, if it is not allowed 
for, the result will be an overbright reverberation, which sounds unnatural.

In this section the concept of reverberation time and reverberant field 
has been discussed. The assumption behind the equations has been that 
the sound field is diffuse. However, if this is not the case then the equations  
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are invalid. Although at mid and high audio frequencies a diffuse field might  
be possible, either by accident or design, at low frequencies this is not the 
case due to the effect of the room’s boundaries causing standing waves.

6.2 rOOM MODES aND StaNDINg WavES

When a room is excited by an impulse, the sound energy is reflected from 
its surfaces. At each reflection some of the sound is absorbed and there-
fore the sound energy decays exponentially. Ideally the sound should be 
reflected from each surface with equal probability, forming a diffuse field. 
This results in a single exponential decay with a time constant propor-
tional to the average absorption in the room. However, in practice not all 
the energy is reflected in a random fashion. Instead some energy is reflected 
in cyclic paths, as shown in Figure 6.30. If the length of the path is a pre-
cise number of half wavelengths then they will form standing waves in the 
room. These standing waves (resonant modes) have pressure and velocity 
distributions which are spatially static and so behave differently from the 
rest of the sound in the room in the following ways:

n They do not visit each surface with equal probability. Instead a subset 
of the surfaces is involved.

n They do not strike these surfaces with random incidence. Instead 
a particular angle of incidence is involved in the reflection of the 
standing wave.

n They require a coherent return of energy back to an original surface: a 
cyclic path. This is of necessity strongly frequency dependent and so 
these paths only exist for discrete frequencies which are determined 
by the room geometry.

Another name for these standing waves in a room are resonant modes 
and the frequencies at which they occur are known as “modal frequencies.” 
Because the modes are spatially static there will be a strong variation of 
sound pressure level as one moves around the room, which is undesirable. 
There are three basic types of room mode, which are outlined in Sections 
6.2.1 to 6.2.3.

6.2.1 axial modes
These modes occur between two opposing surfaces, as shown in Figure 6.31, 
and so are a function of the linear dimensions of the room. The frequencies 
of an axial mode are given by the following equation:
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FIgurE 6.30 
Cyclic reflection paths in 
a room.
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Axial modal paths in a 
room.
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This equation shows that there are an infinite number of possible modal 
frequencies at which an integer number of wavelengths fit into the room, 
with lowest modal frequency occurring when just one half wavelength fits 
into the space between the reflecting surfaces.

6.2.2 tangential modes
These modes occur between four surfaces, as shown in Figure 6.32, and so 
are a function of two of the dimensions of the room. The frequencies of the 
tangential modes are given by the following equation:
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There is also an infinite number of tangential modes, but they must fit an 
integral number of half wavelengths in two dimensions. This has the inter-
esting consequence that the lowest modal frequencies are higher than the 
axial modes, despite the fact that the apparent path length is greater. The 
reason is that the standing waves must fit between the opposing surfaces, 
that is, on the sides rather than the hypotenuse of the triangular path, and 

FIgurE 6.32 
Tangential modal paths in 
a room.
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as the propagating wave travels down the hypotenuse, the effective wave-
length, or phase velocity, on the sides of the room is larger, as shown in 
Figure 6.33. The lowest modal frequency for a tangential mode occurs 
when precisely one half wavelength, at the phase velocity, fits into each 
dimension.

6.2.3 Oblique modes
These modes occur between all six surfaces, as shown in Figure 6.34, and 
so are a function of all three dimensions of the room. The frequencies of 
the oblique modes are given by the following equation:

 
f

c x
L

y
W

z
xy(oblique)   

2

2 2 2


















H  

 

where the oblique modal frequencies (in Hz)(oblique)f

x
xyz 

,, y, z  the number of half wavelengths between the 
      suurfaces (   )

and the distance between the r
1 2, , ,… ∞

L, W, H  eeflecting surfaces (in m)  

The lowest frequencies of these modes are also higher than the lowest axial 
modes, for the reasons discussed earlier.
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The phase velocity of 
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6.2.4 a universal modal frequency equation
The combination of these three types of mode forms a dense set of possible 
standing wave frequencies in the room and they can be combined into one 
equation by simply allowing x, y, and z in the oblique mode equation to 
range from 0, 1, 2 to infinity, giving the following equation which will give 
the frequencies of all possible modes in the room:
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The above equation also shows that if any of the dimensions are inte-
ger multiples of each other then some of the modal frequencies will be 
the same, which can cause problems. It is therefore better to choose non- 
commensurate ratios for the wall dimensions to ensure that the modes are 
spread out as much as possible. Much work has been done on ideal room 
ratios and one set of favorable room dimensions is shown in Table 6.4. 
However, these dimensions are not necessarily the only optimum ones for all 
room sizes. It is also important to realize that room modes are inherent in 
any structure which encloses the sound sources. This means that changing 
the shape of the room, for example by angling the walls, does not remove the 
resonances—it merely changes their frequencies from values that are easily 
calculated to ones which are not. Both Walker (1996) and Cox et al. (2004) 
discuss more general and useful approaches to optimum room dimensions.

FIgurE 6.34 
An oblique modal path in 
a room.
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6.2.5 the Bonello criteria
In general the number of resonances within a given frequency bandwidth 
increases with frequency. In fact it can be shown that they increase propor-
tionally to the square of the frequency, and in large well-behaved acoustical 
spaces, which sound good, this increase in mode density with frequency 
is smooth. This is the rationale behind a method for assessing the modal 
behavior in a room known as the “Bonello criteria.” These criteria try to 
ascertain how significant the modal behavior of a room is in perceptual 
terms. This is done by dividing the audio frequency spectrum into third 
octave bands, as an approximation of critical bands, and then counting 
the number of modes per band. If the number of modes per third octave 
band increases monotonically then there is a good chance that we will per-
ceive the room as having a “smooth” frequency response despite the reso-
nances. If the number of resonances per third octave drops as the frequency 
rises then there will be a perceptually noticeable peak in the frequency  
response.

Coincident modes are also another way of creating a perceptually 
noticeable frequency response peak and the Bonello criteria do further stip-
ulate that there should be no modal coincidence within a third octave band 
unless there are at least three additional non-coincident resonances to bal-
ance the two that are coincident. As an example of the calculation of mode 
frequencies let us calculate some for a typical living room.

table 6.4 Some favorable room dimensions

Height Width Length

A 1.00 1.14 1.39

B 1.00 1.28 1.54

C 1.00 1.60 2.33

ExaMpLE 6.10

Calculate the lowest frequency mode in a room which measures 
3.5 m  5 m  2.5 m. at what frequency would a tangential mode with one half 
wavelength along the 3.5 m dimension and three half wavelengths along the 5 m 
dimension occur, at what frequency would the (2 2 2) oblique mode occur, and at 
what frequency is the first coincident mode?
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Using Equation 6.21 calculate the modes as follows. The lowest frequency mode is the 
first axial mode along the longest dimension of the room, which is the (0 1 0) or axial 
mode in this example, so the lowest modal frequency in the room is:
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The mode with one half wavelength along the 3.5 m dimension and three half wave-
lengths along the 5 m dimension is the (1 3 0) or tangential mode so its frequency is:
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The frequency of the (2 2 2) or oblique mode is:
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The dimensions of 2.5 m and 5 m are related by a factor of 2 so the second axial 
mode along the 5 m dimension will be at the same frequency as the first axial mode along 
the 2.5 m dimension. That is:
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and the (0 0 1) mode has a frequency of:
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which are both at the same frequency and are therefore coincident.
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6.2.6 the behavior of modes
As has been already discussed, modes behave differently to diffuse sound 
and this has the following consequences:

n The modes are not absorbed as strongly as sound which visits all 
surfaces. This is due to both the reduction in the number of surfaces 
visited and the change in absorption due to non-random incidence.

n This reduction in absorption is strongly frequency dependent and 
results in less absorption and therefore a longer decay time at the 
frequencies at which standing waves occur.

n The decay of sound energy in the room is no longer a single 
exponential decay with a time constant proportional to the average 
absorption in the room. Instead there are several decay times. The 
shortest one tends to be due to the diffuse sound field whereas the 
longer ones tend to be due to the resonant modes in the room. This 
results in excess energy at those frequencies with the attendant 
degradation of the sound in the room.

How does the energy in a mode decay as a function of time, how can it be 
related to the reverberation, and what is the effect of absorption in a mode 
on the frequency response?

6.2.7 the decay time of axial modes
The decay of sound energy in modes is in many respects identical to the 
decay of sound energy which is analyzed in Appendix 4. The main differ-
ence is that the absorption coefficient is sometimes smaller, because the 
modal sound wave does not have random incidence; it will also be specific 
to the surfaces involved instead of being an average value for the whole 
room. In addition the time between reflections will be dependent on the 
length of the modal path rather than the mean free path. This means that 
the decay time for a mode is likely to be different to the diffuse sound.

For example the length of an axial mode path is determined by the dis-
tance between the two reflecting surfaces that support the mode, which will 
be one of the room’s dimensions. Thus for an axial mode the energy left 
after a given time period is given by modifying Equation A4.5 in Appendix 
4 using the distance between the surfaces instead of the mean free path  
to give:

 Modal energy Modal energy  ( )After  seconds Initial modet
t 1 α (( / )modec L
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where distance between the surfaces in the mode (in modeL  mm)
and absorption per reflection in the modal structmodeα  uure  

The above equation can be manipulated to give a 60 dB decay time, analo-
gous to Equation 6.17, which is:
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This expresses a similar result to Equation 6.17 except for the difference 
caused by the differing length of the modal structure with respect to the 
mean free path. If the length of the modal structure is longer than the mean 
free path then, assuming similar levels of absorption, the decay time for the 
mode will be longer than the diffuse field whereas if the length is smaller 
then the modal decay will be shorter than the diffuse field. The length 
between reflections is both a function of the surfaces that support the mode 
and the type of mode—axial, tangential, or oblique—that occurs. For axial 
modes the mode length, Lmode, is simply the relevant room dimension.

6.2.8 the decay time of other mode types
For the other types of mode the situation is more complicated, as shown in 
Figure 6.35 for a tangential mode. However, one could argue that the path 
length for this type of mode is given by the length of the hypotenuse of the 
triangle formed by half the length and half the width of the four walls that 
support the mode. That is, the modal length is given by:
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This equation shows that the distance between reflections for a tangential 
mode is essentially the diagonal dimension between the four surfaces that 
support the mode divided by two to allow for the fact that the wave suffers 
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two reflections along this path. The length so derived can then be used as 
the modal length in the equation for the modal decay. A similar argument 
can be applied to the oblique modes, which visit all six surfaces. Because of 
this the modal supporting structure is a cuboid and the diagonal between 
opposing corners must be used. In addition the wave will suffer three reflec-
tions along this path. This gives a path length for the oblique mode as:
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The absorption does more than cause the mode to decay; it reduces the 
total energy stored in the mode, in a similar manner to the effect of absorp-
tion on the reverberant field, and also causes the mode to have a finite 
bandwidth which is proportional to the amount of absorption, as shown in 
Figure 6.36. The absorption also reduces the peak to minimum variation in 
the standing wave pattern, and so reduces the spatial variation of the sound 
pressure, as shown in Figure 6.37. The bandwidth of a mode can be calcu-
lated from the 60 dB decay time using the following equation:
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The path length for a 
tangential mode.
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 where the dB bandwidth of the mode (in Hz)modeBw   3  

Because it is not always possible to calculate the true modal decay time this 
equation can be dangerously approximated using the reverberation time of 
the room as:
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ExaMpLE 6.11

Calculate the approximate modal bandwidth in a room which has a reverberation 
time (T60) of 0.44 seconds. What would be the modal bandwidth of axial modes 
along the 5 m dimension of the room if the absorption coefficients on the opposing 
walls were equal to the average room absorption coefficient of 0.2?
The approximate modal bandwidth can be calculated as:
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To answer the second problem one must calculate the modal decay time, T60 (Modal), 
which is given by:
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This value of decay can be used to calculate the actual modal bandwidth as:
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Clearly care must be taken when calculating modal bandwidths due to 
the fact that the diffuse field assumptions no longer apply. In the case above, 
even though an even distribution of absorption was assumed, the decay 
time and bandwidth were radically different from that predicted by the dif-
fuse field assumptions simply because the path traveled by the sound wave 
was longer than the mean free path. In practice the absorption coefficient  

This assumption is dangerous because the mode will not be diffuse whereas 
the reverberation time calculation assumes a diffuse sound field. In gen-
eral the bandwidths and intensity levels of a mode are proportional to the  
number of reflections required to support them. This means that axial 
modes tend to be the strongest followed by tangential and then oblique 
modes in order of strength, as shown in Figure 6.38. However, this is not 
always the case as a tangential mode in a room with four reflecting surfaces 
could be stronger than the axial mode between the other two absorbing 
surfaces.
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is likely to be different as well, making prediction even more difficult. Note 
that, if the absorption remains constant with frequency, the bandwidths of 
a mode are independent of their frequency—they are simply a function of 
the modal decay time.

6.2.9 Critical frequency
Because all rooms have modes in their lower frequency ranges, there will 
always be a frequency below which the modal effects dominate and the 
room can no longer be treated as diffuse. Even anechoic rooms have lower 
frequency limits to their operation. One of the effects of room modes is to 
cause variations in the frequency response of the room, via its effect on the 
reverberant field. The frequency response due to modal behavior will also be 
room position dependent, due to the spatial variation of standing waves. An 
important consequence of this is that the room no longer supports a diffuse 
field in the modal region and so the reverberation time concept is invalid 
in this frequency region. Instead an approach based on modal decay should 
be used. But at what frequency does the transition occur, and can it even be 
calculated? Consider the typical frequency response of the room shown in 
Figure 6.39. In it, three different frequency regions can be identified.

n The cut-off region: This is the region below the lowest resonance, 
sometimes called the room cut-off region or the pressure 
zone frequency. In this region the room is smaller than a half 
wavelength in all dimensions. This does not mean that the room 
does not support sound propagation, in fact it behaves more like 
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the air in a bicycle pump when the end is blocked. This means 
that the environment “loads” any sources of sound in the room 
differently (such as loudspeakers or musical instruments), and 
often, but not always, the effect of this loading is to reduce the 
ability of the source to radiate sound into the room, and so results 
in reduced sound levels at these frequencies. This is because the 
acoustic impedance at the source is altered, making it harder for 
it to radiate sound. The low-frequency cut-off can be calculated 
simply from:
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n The modal region: The next region is the modal region in which the 
modal behavior of the room dominates its acoustic performance. In 
this region the analysis based on the assumption of a diffuse field is 
doomed to fail.

n The diffuse field region: The final region is the region in which a 
diffuse field can exist and therefore the concept of reverberation 
time is valid. In general this region of the frequency range is the one 
that will sound the best, provided the reverberation characteristics 
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are good, because the effects of room modes are minimal and so the 
listener experiences an even reverberant sound level throughout  
the room.

The transition boundary between the region of modal behavior and the 
region of diffuse behavior is known as the “critical frequency.” As is usual 
in these situations, although the critical frequency is a single frequency it 
is not a sharp boundary: it represents some defined point in a transition 
region between the two regions.

6.2.10 acoustically “large” and “small” rooms
The concept of critical frequency (also known as the “Schroeder frequency” 
or “large room frequency”) allows us to define the difference between rooms 
which are “large” and “small” in acoustical terms. In an acoustically large 
room the critical frequency is below the lowest frequency of the sound that 
will be generated in the room whereas in an acoustically small room the 
critical frequency will occur within the frequency range of the sounds being 
produced in it. Examples of acoustically large rooms would be concert halls, 
cathedrals and large recording studios. Most of us listen to and produce 
music in acoustically small rooms, such as bedrooms, bathrooms and liv-
ing rooms, and there is an increasing trend—due to the effect of computer 
recording and editing technology and because it’s cheaper—to perform 
more and more music and sound production tasks in small rooms.

6.2.11 Calculating the critical frequency
How can the critical frequency be calculated? There are two main 
approaches. The first is to recognize that when the wavelength of the sound 
approaches the mean free path of the room then the likelihood of modal 
behavior increases, because a sound wave is “in touch” with all the walls in 
the room. This approach can be used to set an approximate lower frequency 
bound on the critical frequency below which it is likely to be difficult to 
prevent modal effects from dominating the acoustics without extreme mea-
sures being taken. This approach gives the following expression for calcu-
lating the critical frequency, which assumes that modal behavior dominates 
once the mean free path is equal to one and a half wavelengths:
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This expression is useful for making a rapid assessment of the likelihood of 
achieving a particular critical frequency in a given room. However, the real 
critical frequency may well be higher because a room can have significant 
modal behavior at high frequencies if the absorption is low. Because of this 
the accepted definition of critical frequency is based on the mode bandwidth, 
although this can result in a chicken and egg situation at the initial design 
stages, hence the earlier equation. The rationale for this is as follows. The 
main consequence of modal behavior is the frequency and spatial variation 
caused by it. This means that if a given frequency excites only one mode, then 
this variation will be very strong. However, if a given frequency excites more 
than one mode, both the spatial and frequency variation will be reduced.

Figure 6.40 shows the effect of adding three adjacent modes together; 
it shows that once more than three adjacent modes are added together the 
variation is considerably reduced. The way to excite adjacent modes with a 
single frequency is to increase their bandwidth until the three bandwidths 
associated with the three modes overlap a given frequency point, as shown 
in Figure 6.41. The critical frequency is defined as when the modal overlap 
equals three, so at least three modes are excited by a given frequency, and is 
given by:
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This equation shows that the critical frequency is inversely proportional to 
the square root of the room volume and is proportional to the square root 
of the reverberation time, which is also proportional to the cube root of the 
volume, if the absorption remains constant, as discussed earlier. The net 
result of this is that, as expected, the critical frequencies for larger rooms 
are generally lower than those of smaller ones. Thus big rooms are acousti-
cally “large” as well.

As an example let us calculate the critical frequency of our typical living 
room.
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ExaMpLE 6.12

What is the critical frequency of a room whose surface area is 75 m2, and whose 
volume is 42 m3? What is the critical frequency of the same room if the average 
absorption coefficient is 0.2?
Using the first equation calculate the lowest bound on the critical frequency using the 
mean free path as:
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Using the second equation calculate the critical frequency using the reverberation 
time. Firstly, calculate the reverberation time as:
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Then, using the second equation, calculate the critical frequency as:
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The second equation predicts a slightly lower critical frequency 
 compared with the first one. However, the agreement is surprisingly good. 
Although the modal overlap has been calculated using a reverberation time, 
and hence a diffuse field assumption, this is probably just valid at this fre-
quency, which represents the boundary between the two regions. The criti-
cal frequency results show that, for this room, frequencies below 213 Hz 
must be analyzed using modal decay time rather than reverberation time.

6.3 aBSOrptION MatErIaLS

Absorption materials are clearly important in their effects on the acoustics, 
and this section briefly looks at the factors which affect the performance of 
these materials and their effects on an acoustic space.

There are two basic forms of absorption materials—porous absorbers 
and resonant absorbers—which behave differently because their mecha-
nisms of absorption are different.

6.3.1 porous absorbers
Porous absorbers, such as carpets, curtains and other soft materials, work 
due to frictional losses caused by the interaction of the velocity component 
of the sound wave with the surface of the absorbing material. In Chapter 1  
we saw that the velocity component arose because the air molecules had 
to move between the compression and rarefaction states. A given pressure 
variation will require a greater pressure gradient, and hence higher peak 
velocities, as the wavelength gets smaller with rising frequency. Because the 
pressure gradient of a sound wave increases with frequency, the friction due 
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to interaction with a surface will also increase with frequency and therefore 
the absorption of these types of material also rises with frequency. Clearly 
the larger the surface area available for interaction, the higher the friction 
and therefore the absorption. This means that porous materials, which 
consist of a large number of fibers per unit volume, such as high-density 
rock-wool or fiberglass, and plush carpets, will tend to have a high-level 
absorption. This also explains why curtains which are draped to a fraction 
of their cloth area absorb more strongly than ones which are flat.

Typical absorption curves for porous absorbers are shown in Figure 6.42. 
Because porous absorbers interact with the velocity component of the sound 
wave, they are affected by the space between them and the wall and their 
thickness. This is due to the fact that at the exposed surface of a hard sur-
face, such as a wall, the velocity component is zero whereas at a quarter of 
a wavelength away from the wall the velocity component will be at a maxi-
mum, as shown in Chapter 1, and so a porous material will absorb more 
strongly at frequencies whose quarter wavelength is less than either the 
spacing of the material from the wall, or the thickness of the material if it is 
bonded directly to the surface.

This effect is shown in Figure 6.43. Although in principle there could 
be a variation in the absorption coefficient as the frequency increases above 
the quarter wavelength point, due to the inherent variation of the velocity 
component as a function of wavelength at a fixed distance from a surface, 
in practice this does not occur unless the material is quite thin.
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6.3.2 resonant absorbers
Resonant absorbers, such as wood paneling, work because the incident 
sound energy causes vibrations in the absorber and these are converted to 
frictional losses within the absorbing structure itself. This makes them 
sensitive to the pressure component of the sound wave and so they work 
well when attached to walls. The typical construction of a panel absorber 
is shown in Figure 6.44. In the case of wood panels the absorption is due 
to the internal frictional losses in the wood. In the perforated absorber, dis-
cussed later, it is due to the enhancement of velocity that happens in the 
perforations at resonance. Because the absorbers are resonant their absorp-
tion increases at low frequencies, as shown in Figure 6.45.
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The resonant characteristics of these absorbers enable them to be tuned 
to low frequencies and so allow them to have absorption characteristics 
which complement those of porous absorbers. The peak absorption frequency 
of a resonant absorber is a function of the space behind the absorber and the 
effective mass of the front panel. To use an analogy with a spring and weight, 
the rear cavity acts like a spring whose stiffness is inversely proportional to 
the depth of the cavity and the effective mass per unit area of the front panel 
determines the size of the weight. As the spring gets less stiff and the effec-
tive mass becomes greater, the resonant frequency drops. Thus deeper rear 
cavities result in lower resonances for both types. For the panel absorbers the 
mass per unit area of the panel is directly related to the effective mass, so 
heavier front panels result in a lower resonant frequency. The resonance fre-
quency of panel absorbers can be calculated using the following equation:
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where panel’s mass per unit area (in kg m )
and depth 
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d
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oof the airspace (in m)  

However, this equation must be applied with some caution because it 
assumes that the panel has no stiffness. This assumption is valid for thin 
panels but becomes less applicable as the panel becomes thicker and thus 
more stiff.
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6.3.3 Helmholtz absorbers
Another form of resonant absorber is based on the use of the resonance that 
occurs when air is trapped in a tube above an air space. This type of resonance 
is called a Helmholtz resonance and is the resonance that occurs in a beer bot-
tle when you blow across it. The cavity acts like a spring and the air in the tube 
above the cavity acts like the mass. The construction of this type of absorber 
consists of a perforated panel above an airspace, as shown in Figure 6.46.

For the perforated panels the effective mass is a function of both the 
depth of the perforations and their effective area as a percentage of the total 
area. Their effective mass increases as the depth increases and the percentage 
hole area reduces. Typical absorption curves for this type of absorber are 
shown in Figure 6.47. This type of absorber is often used to add extra absorp-
tion at high-bass and low-midrange frequencies.

6.3.4 Wideband absorbers
It is possible to combine the effects of porous and resonant absorbers to 
form wideband absorbers. A typical construction is shown in Figure 6.48 
and its performance is shown in Figure 6.49. As with all absorbers using 
rock-wool or fiberglass one must take precautions to prevent the egress of 
irritating fibers from the absorber into the space being treated.

An alternative means of achieving wideband absorption is to use a large 
depth of porous absorber, for example one meter, and this can provide effective 
absorption with a flat frequency response, but at the cost of considerable depth.

6.3.5 Summary
With these basic types of absorption structures it is possible to achieve a 
high degree of control over the absorption coefficient in a room as a function  
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of frequency. In many cases much of the required absorption can be 
achieved by using materials which fit naturally in the room. For example, 
much baroque music was performed in the halls of mansions which had a 
balanced acoustic due to the extensive use of wood paneling in their deco-
ration. This paneling acted as an effective low-frequency absorber and, in 
conjunction with the flags, drapes and tapestries that also decorated these 
spaces, provided the necessary acoustic absorption.
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6.4 DIFFuSION MatErIaLS

As well as absorption it is essential that the sound be diffused when it 
strikes a surface. Ideally we want the acoustic equivalent of a matt surface. 
Unfortunately most surfaces, including large areas of absorbing material, 
act like acoustic mirrors, with varying shades of darkness. In order to have 
a matt surface one needs a “bumpy wall” and many things can be used to 
provide this. Unfortunately the bumps need to be at least an eighth, and 
preferably a quarter, of a wavelength in size to be effective. This results 
in the requirement for very large objects at low frequencies (1.25–2.5 m  
at 34 Hz) and very small objects at higher frequencies (1.25–2.5 cm  
at 3.4 kHz). If the objects are too small, that is, less than one eighth of a. If the objects are too small, that is, less than one eighth of a If the objects are too small, that is, less than one eighth of a  
wavelength, they will not diffuse properly; if they are too big, that is, greater 
than about a half a wavelength, they will behave as acoustic mirrors in 
their own right and so will not diffuse effectively.

Clearly effective diffusion is a difficult thing to achieve in an ad hoc man-
ner. Curved and angled structures can help at mid and high frequencies, and 
at very high frequencies, greater than about 4 kHz, the natural rough tex-
tures of materials such as brick and rough cut stone are effective. Because 
of the need to achieve well-defined diffusion characteristics, diffusion struc-
tures based on patterns of wells whose depths are formally defined by an 
appropriate mathematical sequence have been proposed and used (Schroeder, 
1975 and D’Antonio and Konnert, 1984). The design of these structures is 
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quite involved and the reader is directed to the references if they want more 
information. However, a brief description of how they work is as follows.

6.4.1 How diffusers work
Consider a hard surface consisting of bumps of height d. Also consider an 
acoustic wavefront approaching it from a normal direction. The way this 
wavefront is reflected will depend on the height of the bumps relative to its 
wavelength. Let us consider three cases:

n In the case of d    the surface will behave like a flat surface and 
specularly reflect the wavefront.

n In the case of d  λ4  the wavefronts which are reflected from the 
front of the bumps are reflected λ2 earlier than those from the 
surface. This means that in the normal direction the wavefronts 
cancel and so no sound pressure is propagated in this direction. 
However, there has been no energy loss in the system so the 
wavefront must be reflected in some direction. In fact as one moves 
away from the normal direction the relative path lengths between 
the bump and the surface become less and the amplitude of the 
wavefront increases. This is the basic principle behind diffusion 
using hard reflectors. That is, the diffusing surface modifies the 
phase of the wavefronts so that the reflected wave must propagate in 
directions other than the specular direction.

n In the case of d  λ2  the wavefronts from the bumps and surface are 
delayed by  and so arrive back in phase. Thus the bumps disappear 
and the surface behaves as if it were flat. That is, it behaves like a 
specular reflector.

So, one has a problem: a regular sequence of bumps will diffuse but only at 
frequencies at which it is an odd multiple of λ4 . Note also that these fre-
quencies will depend on the angle of incidence of the incoming wavefront.

What is required is a pattern of bumps which alter the phases of the 
incident waves in such a way that two objectives are satisfied:

 1. The sound is scattered in some “optimum” manner.

 2. The scattering is optimum over a range of frequencies.

These objectives can be satisfied by several different sequences, but they 
share two common properties:

n The Fourier transform of the sequence is constant except for the 
d.c. component which may be the same or lower. This satisfies 
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objective (1) because it can be shown that reflection surfaces with 
such a property scatter energy equally in all directions. The effect of 
a reduced d.c. component is to further reduce the amount of energy 
which is reflected in the specular direction.

n The second desirable property of these sequences is that the Fourier 
transform is unaffected if the wavelength of the incident sound 
varies. This has the effect of changing the scale of the sequence, but 
again one can show that the resulting sequence still has the same 
properties as the original sequence.

Both the above properties arise because the sequences work by perturbing 
the wavefronts over a full cycle of the waveform. Such sequences are called 
phase reflection gratings because they perturb the phase of the wavefront.

To make this a little clearer, let us consider two sequences which are 
used for diffusers.

 1. Quadratic residue sequences well depth  n2 mod p where p is a 
prime number. If p  5 this gives a set of well depths of

 0, 1, 4, 4, 1, 0, 1, . . ., etc.

 so the sequence repeats with a period of 5.

 2. Primitive root sequences well depth  an mod p where p is a prime 
and a is a suitable constant called a primitive root. For a  2 and 
p  5 we get the sequence

 1, 2, 4, 3, 1, 2, . . ., etc.

Here we have a sequence which has a period of 4 (5  1).
At the lowest design frequency for these examples a well of depth 5 would 

correspond to λ2 . At higher frequencies the sequences still have the same 
properties and thus scatter sound effectively. However, when the frequency 
gets high enough so that λ2  becomes equal to the minimum difference in 
depths (1) then the surface again becomes equivalent to a flat surface.

The typical construction of these structures is shown in Figure 6.50 and 
their performance is shown in Figure 6.51.

6.4.2 Discussion
As we have seen, these sequences achieve their performance by spreading 
the phase of the reflected wavefront over at least one cycle of the incident 
wavefront. In order to do this, their maximum depth must be λ2  at the 
lowest design frequency. This means that to achieve diffusion a reasonable 
depth is required. For example, to have effective diffusion down to 500 Hz a 
depth of 34 cm (13.5 inches) is required. To get down to 250 Hz one would 
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need to double this depth. However, as we have seen, a simple bump of λ4  
can provide diffusion, albeit somewhat frequency dependently. This is half 
the depth of the above sequences and represents the ultimate limit for a 
diffusing object.

It is possible to have sequences which achieve the phase scatter required 
for good diffusion using a depth closer to λ4  at the lowest frequency (4) and 
so allow better performance diffusers in restricted spaces. However, even λ4  
at low frequencies is often too large to be useful. What one really requires is 
a diffuser which is effective without using any depth!

6.4.3 amplitude reflection gratings
It is not just physically observable bumps on the wall that can cause diffu-
sion of the sound. In fact any change in the reflecting characteristics of the 
surface will cause diffusion. The change from an absorbing region on a wall 
to a reflecting one is an example of a change that will cause the sound to 
scatter. Thus it is always better to distribute the absorption in small ran-
dom amounts around a room rather than concentrate it in one particular 
area. As well as encouraging diffusion this strategy will avoid the possibility 
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that some modes might shuttle between surfaces with minimum absorp-
tion. There are also mathematically-based procedures for the optimum 
placement of absorbing materials to encourage diffusion; for more details 
on this see Angus (1995). What is required is an amplitude weighting, that 
is, a pattern of absorbers, which gives a flat Fourier transform.

The most obvious sequences to consider are binary, that is, they contain 
only levels 0 and 1 where 1 represents reflection from a hard surface and 0 
represents absorption from some form of absorbing material. Clearly not all 
acoustic absorbers are 100% absorbing but this can be simply allowed for by 
using (1-absorption) instead of zero in the sequence. The net effect of less 
than 100% absorption would be to increase the level of the specular com-
ponent. Of the many possible binary sequences, m-sequences would seem 
to be a good starting point as they have desirable Fourier properties. There 
are many other bi-level sequences which have flat Fourier transforms but  
m-sequences are well documented.
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Quadratic residue diffuser Flat plate FIgurE 6.51  
Typical performance 
of a quadratic residue 
diffuser compared with a 
flat plate. (Note that for 
convenience the responses 
have normalized to 0 dB 
in the specular direction. 
In practice the flat plate’s 
output would be greater in 
this direction.)

m-sequences are 
pseudo-random 
binary sequences 
that can be 
easily generated 
by software or 
hardware.

Thus amplitude reflection gratings consist of a surface treatment which 
consists of strips of absorbing material, whose width is less than λ2  at the 
highest frequency of use, laid out in a pattern in which strips of absorber 
represent zero and strips of reflecting wall represent 1 (see Figure 6.52). 
Note that because we are not depending on depth we do not have a low-fre-
quency limit to the range of diffusion, only a high-frequency limit which is 
a function of the width of the strips.

A two-dimensional example of an amplitude reflection grating is shown 
in Figure 6.53. Amplitude gratings provide some diffusion although they 
cannot be as good at diffusing as phase reflection gratings. But, because of 



CHaptEr 6: Hearing Music in Different Environments350
Reflector

Reflective strips, for example wood

Absorbing material

FIgurE 6.52  
Simple implementation of a 
length 15 one-dimensional 
Binary Amplitude Diffuser.

FIgurE 6.53  
An implementation 
of a length 1023 two-
dimensional Binary 
Amplitude Diffuser (white 
dots are holes over 
absorber).



3516.5 Sound Isolation
their size, they are useful at low frequencies. It also is possible to develop 
curved diffusion structures, although there are no simple mathematical rec-
ipes for them. For further details see Cox (1996). Other structures are pos-
sible and the reader is referred to the references for more information.

6.5 SOuND ISOLatION

No discussion of the quality of sound in a room would be complete without 
a brief discussion of how to keep unwanted sound from entering a room, 
or how to keep the wanted sound in, so as not to disturb the pleasure of 
people inside or outside it.

The first thing to note is that just because a material is a good absorber 
of sound doesn’t mean that it is a good isolator of sound. In fact most 
absorbing materials are terrible at sound isolation. This is because, in the 
sound isolation case, we are interested in the amount of sound that travels 
through a structure rather than the amount that is absorbed by it, as shown 
in Figure 6.54. A poor value of sound isolation would be around 20 dB yet it 
corresponds to only one hundredth of the sound being transmitted. A good 
absorber with an absorption coefficient of 0.9 would let one tenth of the 
sound through, which corresponds to a sound isolation of only 10 dB! As 
we are more interested in sound isolations of 40 dB as a minimum, absorp-
tion is clearly not the answer.

Absorbing
material

10% (–10 dB)
transmitted

90% absorbed
for α = 0.9

FIgurE 6.54  
Sound transmission versus 
sound absorption in a 
material.
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6.5.1 Ways of achieving sound isolation
There are only two ways to achieve sound isolation: using either stiffness  
or mass. Figure 6.55 shows the attenuation of a partition as a function of 
frequency and from it one can see that stiffness is effective at low frequen-
cies due to the fact that the sound wave must push against the stiffness of 
the partition. This is known as the “stiffness-controlled isolation region.”  
As the frequency rises, the partition needs to move less distance to re-radiate  
a given level of sound and so it gets less effective until at the resonant fre-
quency of the partition its level of attenuation is at its lowest value. This is 
due to the fact that at resonance the partition can be moved easily by the 
incident sound wave and so re-radiates the sound effectively.

As the frequency rises above the partition’s resonant frequency, the 
mass-controlled region of isolation is entered. In this region, it is the fact 
that the sound must accelerate a heavy mass that provides the isolation. 
Because more force is required to move the partition at higher frequen-
cies, the attenuation rises as the frequency rises. At even higher frequen-
cies there are resonances in which both the thickness of the partition and 
the way sound propagates within it interact with the incident sound to 
form coincident resonances that reduce the attenuation of the partition. 
Damping can be used to reduce the effect of these resonances.

Most practical partitions operate in the mass-controlled region of the iso-
lation curve with coincident resonances limiting the performance at higher 
frequencies. Figure 6.56 shows the attenuation of a variety of single partitions  
as a function of frequency. In particular note that the plaster board wall has 
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a significant coincidence resonance. The performance of a single partition 
increases by 3 dB every time its mass is doubled but the coincidence reso-
nances move lower in frequency as well. These coincidence resonances limit 
the ultimate performance of single partitions. In addition the cost, and size, 
of single partitions get unreasonable for large attenuations.

6.5.2 Independent partitions
The solution is to have two or more partitions which are independent of 
each other. If the two partitions are truly independent then the total atten-
uation, or effective sound isolation, is the product of the attenuations of 
individual partitions, that is, the dB attenuation is the sum of the dB atten-
uations of the individual partitions. In practice the partitions are not inde-
pendent although the isolation is improved dramatically, but not as much 
as would be predicted by simply summing the dB attenuations. Coincidence 
resonances also reduce the effectiveness of a partition and it is important to 
ensure that the two partitions have different resonances. This is most eas-
ily assured by having them made with either a different thickness, or a dif-
ferent material.

As an amusing example Figure 6.57 shows the measured results, from 
Inman (1994), for single and double-glazing made with similar and differ-
ent thicknesses of glass and spacing. Because of the effect of the coincidence 
resonances the double-glazed unit with 4 mm glass is actually worse than a 
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single pane of 4 mm glass! As the other two curves show, if the glass is dis-
similar the result is much improved, and is further improved if the spacing 
is increased so as to reduce the coupling between the individual partitions. 
Often, absorbing material is placed in the cavity between the two partitions 
to reduce the effect of coincidence resonances but it is important to ensure 
that the absorbing materials do not make contact with the two partitions or 
else flanking may occur.

6.5.3 Flanking paths
Flanking paths, which are the main limitation to sound isolating structures, 
arise when there are other paths that the sound can travel through in order 
to get round, that is, flank, the sound isolating structure, as shown in 
Figure 6.58. Typical paths for flanking are the building structure, heating 
pipes, and, most commonly, ventilation systems or air leaks. The effect 
of the building structure can be reduced by building a “floating room,” as 
shown in Figure 6.59, which removes the effect of the building structure by 
floating the room on springs away from it.

In practice, ensuring that no part of the building is touching the float-
ing room by any means (plumbing pipes and electrical wiring conduits are 
popular offenders in this respect) is extremely difficult. The effect of ven-
tilation systems and air leaks is also a major source of flanking in many 
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cases. In fact in the domestic situation the sound isolation is almost 
entirely dominated by air leaks and draught paths, and it is the removal of 
these that allow double-glazing salesmen to advertise a dramatic improve-
ment in sound isolation, despite having two 4 mm panes of glass in the 
double-glazing.

So in order to have good sound isolation one needs good partitions and 
an airtight, draught-free, structure. Achieving this in practice while still 
allowing the occupants to breathe is a challenge.

FIgurE 6.58  
Flanking paths in a 
structure.

FIgurE 6.59  
Floating room  
construction.
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6.6  tHE EFFECt OF rOOM BOuNDarIES ON 
LOuDSpEakEr Output

If we wish to listen to sound from loudspeakers we must also consider the 
effect the room has on them. We have already seen that the reverberant 
field colors the sound of the loudspeakers depending on its level relative to 
the direct sound. However, the walls of the room also have an effect.

The effect of the presence of boundaries, such as walls, on the low-
frequency output of loudspeakers is well known (Allison, 1980). Many 
 methods of ameliorating these effects have been proposed, ranging from 
careful positioning to special speaker designs that try to remove the effect 
of the boundaries.

When a speaker is placed near a reflecting boundary an image source 
is formed due to that reflecting boundary, as shown in Figure 1.28 in 
Chapter 1. Thus when a speaker is placed near three reflecting boundar-
ies three image sources are formed, as shown in Figure 6.60. The effect 
of these image sources, which represent reflections from the boundary,  
is to modify the local acoustic impedance seen by the loudspeaker. Because 
a dynamic speaker is mass controlled in its normal working region it forms 
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a high impedance source and therefore the radiated power is affected by the 
local impedance variations.

Waterhouse (1955) extended work by Rayleigh (1964) and confirmed 
experimentally that the power output of a source is affected the presence of 
boundaries, for example the walls in a room. The effect of this is plotted in 
Figures 6.61 and 6.62 for two different boundary conditions. In one case, all 
the dimensions are the same (Figure 6.61); in the other, they are different to 
minimize the effects (Figure 6.62). It does not matter from which surface a 
speaker has a particular spacing. However, it is important that the dimensions 
are in the correct ratio. Note that in these graphs the x-axis is the number 
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of wavelengths with respect to the distance “x” from the boundary. This is  
analogous to frequency, but scaled as with respect to distance. Thus if “x” 
equaled one meter a value of “1” on the x-axis would correspond to a wave-
length of one meter (344 Hz); if “x” equaled half a meter a value of “1” on the 
x-axis would correspond to a wavelength of half a meter (688 Hz), and so on.

From these graphs, we can see two main things:

 1. If the dimensions are the same then one has a low-frequency 
response that rises 9 dB above the mid-band response, and that has 
significant variation over the frequency range – in particular when 
the distance between the loudspeaker and the boundaries is just 
above a quarter of a wavelength

 2. By placing the speaker carefully, with respect to the boundaries, 
one can eliminate some of the variation in the response. However, 
one still has a 9 dB rise in response at low frequencies. This is well 
known and the 9 dB rise at low frequencies is inherent in operating 
in an environment with three boundaries. In general, the low-
frequency responses of loudspeakers designed to be placed close to 
boundaries is tailored to compensate for it.

In the case of flush mounting the speaker in the wall, the result is slightly 
different. Now the effect of the mounting surface extends to very high fre-
quencies and therefore the number of surfaces that affect the low-frequency 
response reduces to two. This means the maximum low-frequency rise 
becomes 6 dB and the optimum ratios of placement change.

In the modal region the whole room affects the loudspeaker’s output. 
In this region the output of the speaker is strongly affected by how the 
modal shapes in the room interact with the loudspeaker. As discussed with 
regard to bowed instruments in Chapter 4, the point of excitation strongly 
affects which modes are excited. This effect also happens with loudspeak-
ers, except, unlike the bowed string, it is now a three-dimensional problem! 
It is sometimes possible to find compromise positions for the loudspeakers 
that excite the room modes as evenly as possible but, needless to say, this 
is very room-, and speaker-, dependent.

6.7  rEDuCtION OF ENCLOSurE DIFFraCtION 
EFFECtS

The other aspect of loudspeakers is the effect of diffraction around the 
enclosure shape. If the speaker is wall mounted this is not important, but 
for free-standing speakers it is an issue.
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In 1950, Olson (1969) demonstrated, experimentally, that the enclo-
sure shape and size significantly affect the frequency response of a loud-
speaker, due to diffraction effects. These diffraction effects can occur at 
any frequency where the wavelength is of similar size, or smaller than the 
box. This means that they can occur in any small enclosure, such as a top 
mounted tweeter. They can also occur in the main cabinets if there are 
drivers whose frequency ranges produce wavelengths of appropriate dimen-
sions relative to the box sizes.

In the context of loudspeaker design it is the bounded to unbounded 
case that is important as this is what happens when a sound wave from 
a loudspeaker reaches the edge of the front face of an enclosure. In this 
situation, the wave is making a transition from being bounded by the front 
of the enclosure to being unbounded, as shown in Figure 6.63. The con-
sequential reflections cause disturbances to the frequency response of the 
loudspeaker because they interfere with the main output.

Some of Olson’s results are shown in Figure 6.64. His research showed 
that the shape of an enclosure should be, ideally, curved and small with 
respect to the wavelengths in use. He also found that the shape with the 
smoothest response was spherical; see Figure 6.64(b). However, he also 
showed that non-spherical shapes, such as the truncated pyramid and rect-
angular parallelepiped combination shown in Figure 6.64(c), could also give 
good performance.

Although an ideal shape is spherical, as shown in Figure 6.65(a), other 
curved shapes offer some practical advantages. In particular, a truncated 
ellipsoidal shape, as shown in Figure 6.65(b), offers a good diffraction per-
formance and some flexibility in the volume for a given frontal area. This 
is important for several reasons.

Diffracted wave
Speaker enclosure

Reflected wave

Continuing wave

Incident wave

FIgurE 6.63 
Reflection due to bounded–
unbounded transition at a 
loudspeaker cabinet edge.
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Firstly, in order to maintain an approximately spherical shape, a spheri-
cal enclosure must have a diameter that is significantly larger than the 
diameter of the drive unit. In Figure 6.65a the sphere’s diameter is twice 
that of the drive unit. If the diameter of the sphere equaled that of the drive 
unit the enclosure shape would be a half sphere, which would have a poorer 
performance than a sphere.

Secondly, the volume of the enclosure interacts with the drive unit to 
set a lower frequency limit for the loudspeaker. Clearly, a sphere cannot 

have a diameter that is less than the diameter of 
the drive unit. Truncated ellipsoidal shapes, as 
shown in Figure 6.65(b), have an additional degree 
of freedom that, within reason, allows one to set 
the volume independently of the diameter of the 
drive unit.

Finally, a sphere suffers from coincident reso-
nances that can affect the frequency and time 
response of the loudspeaker. A truncated ellipsoidal  
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shape, as shown in Figure 6.65(b), has non-coincident resonances that can 
result in a smoother response.

Olson’s results indicate that truncated ellipsoidal shapes, as shown in 
Figure 6.65, can achieve nearly as good results as a sphere.

Diffraction at bass frequencies is generally less of a problem, because the 
wavelengths are large compared with the cabinet size. However, if the main 
cabinet contains midrange units then it must also take account of diffrac-
tion effects. As this enclosure must also contain the bass units, and must 
sit on a surface, it is not possible to have a spherical enclosure. Instead, the 
curvature can only be arranged in the vertical axis.

Olson (1969) also examined this condition and some of his results are 
shown in Figure 6.66. From Figure 6.66(a) we can see that the rectangular 
parallelepiped enclosure has significant diffraction effects. This is despite the 
fact that the driver is mounted off-center, a strategy that reduces the effect 
of diffraction by reducing the number of coincidence effects. The cylindrical 
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enclosure, Figure 6.66(b), does not seem to offer much improvement. This is 
due to both the presence of two edges, and to the coincidence effects caused 
by the central location of the driver between those two edges. An off-center 
driver would have improved the results.

The rectangular truncated pyramid and rectangular parallelepiped combi-
nation enclosure with an off-center driver, Figure 6.66(c), offers a considerable 
improvement. If the front surfaces are smooth curves instead of facets, the 
response will be even better, and will have only been limited by the abrupt 
transitions from the rear of the cabinet. The main consequence of these 
results is that wherever possible the enclosure should be curved near the 
drive-units and that the drive-units should not be mounted in the center of 
the enclosure. In practice, they will have to be mounted centrally in the hori-
zontal direction, but they do not need to be so in the vertical direction. Under 
these circumstances, the most appropriate shape is circular. However, for the 
reasons outlined previously, an ellipsoidal shape is often more appropriate.

In this chapter we have examined how the space in which the sound is 
reproduced affects both its reproduction and perception. We have seen how 
the room affects the output of loudspeakers, and other sound sources. We 
have also analyzed various situations and examined various techniques for 
achieving a good acoustic environment for hearing music.
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So far in this book we have considered acoustics and psychoacoustics as 
separate topics. However, real applications often require the combination of 
the two because although the psychoacoustics tells us how we might per-
ceive the sound, we need the acoustic description of sound to help create 
physical, or electronic, solutions to the problem. The purpose of this chap-
ter is to give the reader a flavor of the many applications that make use of 
acoustics and psychoacoustics in combination. Of necessity these vignettes 
are brief and do not cover all the possible applications. However, we have 
tried to cover areas that we feel are important, and of interest. The level of 
detail also varies but, in all cases, we have tried to provide enough detail 
for the reader to be able to read, and understand, the more advanced texts 
and references that we provide, and any that the reader may discover them-
selves, for further reading. The rest of this chapter will cover listening room 
design, audiometry, psychoacoustic testing, filtering and equalization, pub-
lic address systems, noise reducing headphones, acoustical social control 
devices, and last, but by no means least, audio coding systems.
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7.1 CrItICAL LISteNINg rOOM DeSIgN

Although designing rooms for music performance is important, we often lis-
ten to recorded sound in small spaces. We listen to music, and watch televi-
sion and movies, in both stereo and surround, in rooms that are much smaller 
that the recording environments. If one wishes to evaluate the sound in these 
environments then it is necessary to make them suitable for this purpose. In 
Chapter 6 we have seen how to analyze existing rooms and predict their per-
formance. We have also examined methods for improving their acoustic char-
acteristics. However, is there anything else we can do to make rooms better for 
the purpose of critically listening to music? There are a variety of approaches 
to achieving this and this section examines: optimal speaker placement, IEC 
rooms, room energy evolution, LEDE rooms, non-environment rooms, and 
diffuse reflection rooms.

7.1.1 Loudspeaker arrangements for critical listening
Before we examine specific room designs, let us first examine the optimum 
speaker layouts for both stereo and 5.1 surround systems. The reason for doing 
this is that most modern room designs for critical listening need to know 
where the speakers will be in order to be designed. It is also pretty pointless 
having a wonderful room if the speakers are not in an optimum arrangement.

Figure 7.1 shows the optimum layout for stereo speakers. They should 
form an equilateral triangle with the center of the listening position. If one 
has a greater angle than this the center phantom image becomes unstable— 
the so-called “hole in the middle” effect. Clearly, having an angle of less 
than 60° results in a narrower stereo image.

5.1 surround systems are used in film and video presentations. Here the 
objective is to provide both clear dialog and stereo music and sound effects, 
as well as a sense of ambience. The typical speaker layout is shown in  
Figure 7.2. Here, in addition to the conventional stereo speakers there are some 
additional ones to provide the additional requirements. These are as follows:

n Center dialog speaker: The dialog is replayed via a central speaker 
because this has been found to give better speech intelligibility over 
a stereo presentation. Interestingly the fact that the speech is not in 
stereo is not noticeable because the visual cue dominates so that we 
hear the sound coming from the person speaking on the screen even 
if their sound is coming from a different direction.

n  Surround speakers: The ambient sounds, and sound effects, are 
diffused via rear mounted speakers. However they are, in the 
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main, not supposed to provide directional effects and so are often 
deliberately designed, and fed signals, to minimize their correlation 
with each other and the front speakers. The effect of this is to fool 
the hearing system into perceiving the sound as all around with no 
specific direction.

n Low-frequency effects: This is required because many of the sound 
effects used in film and video, such as explosions and punches, 
have substantial low-frequency and subsonic content. Thus, a 
specialized speaker is needed to reproduce these sounds properly. 
Note: this speaker was never intended to reproduce music signals, 
notwithstanding their presence in many surround music systems.

More recently systems using six or more channels have also been proposed 
and implemented; for more information see Rumsey (2001).

As we shall see later the physical arrangement of loudspeakers can sig-
nificantly affect the listening room design.

7.1.2 IeC listening rooms
The first type of critical listening room is the IEC listening room (IEC, 
2003). This is essentially a conventional room that meets certain mini-
mum requirements: a reverberation time that is flat, and between 0.3 and 
0.6 seconds above 200 Hz, a low noise level, an even mode distribution  
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and a recommended floor area. In essence 
this is a standardized living room that 
provides a consistent reference envi-
ronment for a variety of listening tasks. 
It is the type of room that is often used 
for psychoacoustic testing as it provides 
results that correlate well with that which 
is experienced in conventional domestic 
environments. This type of room can be 
readily designed using the techniques dis-
cussed in Chapter 6.

However, for critically listening to 
music mixes, etc. something more is 
required and these types of room will now be discussed. All of them don’t 
only control reverberation, but also the time evolution and level of early 
reflections. They also all take advantage of the fact that the speakers are in 
specific locations to do this and very often have an asymmetric acoustic that 
is different for the listener and the loudspeakers. Although there are many dif-
ferent implementations, they fall into three basic types: reflection controlled 
rooms, non-environment rooms, and diffuse reflection rooms. As they all  
control the early reflections within a room we shall look at them first.

7.1.3 energy–time considerations
A major advance in acoustical design for listening to music has arisen 
from the realization that, as well as reverberation time, the time evolu-
tion of the first part of the sound energy build-up in the room matters, that 
is, the detailed structure and level of the early reflections, as discussed in  
Chapter 6. As it is mostly the energy in the sound that is important as 
regards perception, the detailed evolution of the sound energy as a function of 
time in a room matters. Also there are now acoustic measurement systems 
that can measure the energy–time curve of a room directly, thus allowing a 
designer to see what is happening within the room at different frequencies, 
rather than relying on a pair of “golden ears.” An idealized energy–time curve 
for a typical room is shown in Figure 7.3. It has three major features:

n A gap between the direct sound and first reflections. This happens 
naturally in most spaces and gives a cue as to the size of the space. The 
gap should not be too long—less than 30 ms—or the early reflections 
will be perceived as echoes. Some delay, however, is desirable as it gives 
some space for the direct sound and so improves the clarity of the 
sound, but a shorter gap does add “intimacy” to the space.
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ChAPter 7: Applications: Acoustics and Psychoacoustics Combined370
n The presence of high-level diffuse early reflections, which come 
to the listener predominantly from the side, that is, lateral early 
reflections. This adds spaciousness and is easier to achieve over the 
whole audience in a shoebox hall rather than a fan-shaped one. The 
first early reflections should ideally arrive at the listener within 20 ms 
of the direct sound. The frequency response of these early reflections 
should ideally be flat and this, in conjunction with the need for a 
high level of lateral reflections, implies that the side walls of a hall 
should be diffuse reflecting surfaces with minimal absorption.

n A smoothly decaying diffuse reverberant field which has no obvious 
defects, and no modal behavior, and whose time of decay is appropriate 
to the style of music being performed. This is hard to achieve in 
practice so a compromise is necessary in most cases. For performing 
acoustic music a gentle bass rise in the reverberant field is desirable to 
add “warmth” to the sound but in studios this is less desirable.

7.1.4 reflection-controlled rooms
For the home listener, or sound engineer in the control room of a studio, 
the ideal would be an acoustic that allows them to “listen through” the sys-
tem to the original acoustical environment that the sound was recorded in. 
Unfortunately the room in which the recorded sound is being listened to is 
usually much smaller than the original space and this has the effect shown 
in Figure 7.4. Here the first reflection the listener hears is due to the wall 
in the listening room and not the acoustic space of the sound that has been 
recorded. Because of the precedence effect this reflection dominates, and the 

replayed sound is perceived as com-
ing from a space the size of the listen-
ing room, which is clearly undesirable. 
What is required is a means of making 
the sound from the loudspeakers appear 
as if it is coming from a larger space by 
suppressing the early reflections from 
the nearby walls, as shown in Figure 
7.5. Examples of this approach are: 
“live end dead end” (LEDE) (Davies 
and Davies, 1980), “Reflection free 
zone” (RFZ) (D’Antonio and Konnert, 
1984), and controlled reflection rooms 
(Walker, 1993, 1998).
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One way of achieving this is to use absorption, as shown in Figure 7.6. 
The effect can also be achieved by using angled or shaped walls, as shown in 
Figures 7.7 and 7.8. This is known as the “controlled reflection technique” 
because it relies on the suppression of early reflections in a particular area 
of the room to achieve a larger initial time delay gap. This effect can only 
be achieved over a limited volume of the room unless the room is made 
anechoic, which is undesirable. The idea is simple: by absorbing, or reflect-
ing away, the first reflections from all walls except the furthest one away 
from the speakers the initial time delay gap is maximized. If this gap is 
larger than the initial time delay gap in the original recording space then the 
listener will hear the original space, and not the listening room.

However, this must be achieved while satisfying the need for even dif-
fuse reverberation, and so the rear wall in such situations must have some 
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explicit form of diffusion structure on it to assure this. The initial time 
delay gap in the listening should be as large as possible, but is clearly lim-
ited by the time it takes sound to get to the rear wall and back to the lis-
tener. Ideally this gap should be 20 ms but it should not be much greater 
or it will be perceived as an echo. In most practical rooms this require-
ment is automatically satisfied and initial time delay gaps in the range of 
8 ms to 20 ms are achieved.

Note that if the reflections are redirected rather than being absorbed, 
then there will be “hot areas” in the room where the level of early reflec-
tions is higher than normal. In general it is often architecturally easier to 
use absorption rather than redirection, although this can sometimes result 
in a room with a shorter reverberation time.
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Left-hand
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FIgUre 7.7
Controlled reflection 
room (in the style of Bob 
Walker) for free-standing 
loudspeakers (from Newell 
2008).
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7.1.5 the absorption level required for reflection-free zones
In order to achieve a reflection-free zone it is necessary to suppress early 
reflections, but by how much? Figure 7.9 shows a graph of the average level 
that an early reflection has to be at in order to disturb the direction of a stereo 
image. From this we can see that the level of the reflections must be less than 
about 15 dB to be subjectively inaudible. Allowing for some reduction due to 
the inverse square law, this implies that there must be about 10 dB, or   0.9 
of absorption on the surfaces contributing to the first reflections. In a domes-
tic setting it is possible to get close to the desired target using carpets and 
curtains, and bookcases can form effective diffusers, although persuading the 
other occupants of the house that carpets, or curtains, on the ceiling is chic 
can be difficult. In a studio more extreme treatments can be used. However, 
it is important to realize that the overall acoustic must still be good and com-
fortable, that it is not anechoic, and that, due to the wavelength range of audi-
ble sound, this technique is only applicable at mid to high frequencies where 
small patches of treatment are significant with respect to the wavelength.

7.1.6 the absorption position for reflection-free zones
Figure 7.10 shows one method of working out where absorption should 
be placed in a room to control early reflections. By imagining the relevant 
walls to be mirrors it is possible to create “image rooms” that show the 

FIgUre 7.8
An example controlled 
reflection room, Sony Music 
M1, New York, NY. (Photo 
by Paul Ellis of The M 
Network Ltd; Acoustician: 
Harris, Grant Associates)
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direction of the early reflections. By defining a reflection-free space around 
the listening position, and by drawing “rays” from the image speaker 
sources, one can see which portions of the wall need to be made absorbent, 
as shown in Figure 7.11. This is very straightforward for rectangular rooms, 
but a little more complicated for rooms with angled walls. Nevertheless, 
this technique, can still be used. It is applicable for both stereo and sur-
round systems, the only real difference being the number of sources.
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In Figure 7.11 the rear wall is not treated because normally some form 
of diffusing material would be placed there. However, absorbing material 
could be so placed, in the places determined by another image room created 
by the rear wall, if these reflections were to be suppressed. One advantage 
of this technique is that it also shows places where absorption is unneces-
sary. This is useful because it shows you where to place doors and windows 
that are difficult to make absorptive. To minimize the amount of absorp-
tion needed one should make the listening area as small as possible because 
larger reflection free volumes require larger absorption patches. The method 
is equally applicable in the vertical as well as the horizontal direction.

7.1.7 Non-environment rooms
Another approach to controlling early reflections, which is used in many 
successful control rooms, is the “non-environment” room. These rooms 
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control both the early reflections and the reverberation. However, although 
they are quite dead acoustically, they are not anechoic. Because for users in 
the room there are some reflections from the hard surfaces, there are some 
early reflections that make the room non-anechoic. However, sound that is 
emitted from the speakers is absorbed and is never able to contribute to the 
reverberant field. How this is achieved is shown in Figure 7.11.

These rooms have speakers, which are flush mounted in a reflecting wall, 
and a reflecting floor. The rear wall is highly absorbent, as are the side walls 
and ceiling. The combined effect of these treatments is that sound from the 
loudspeakers is absorbed instead of being reflected so that only the direct sound 
is heard by the listener, except for a floor reflection. However, the presence of 
two reflecting surfaces does support some early reflections for sources away 
from the speakers. This means that the acoustic environment for people in the 
room, although dead, is not oppressively anechoic. Proponents of this style of 
room say that the lack of anything but the direct sound makes it much easier 
to hear low-level detail in the reproduced audio and provides excellent stereo 
imaging. This is almost certainly due to the removal of any conflicting cues in 
the sound, as the floor reflection has very little effect on the stereo image.

These rooms require wide-band absorbers as shown in Figure 7.12. 
These absorbers can take up a considerable amount of space. As one can 
see in Figure 7.12, the absorbers can occupy more than 50% of the volume. 
However, it is possible to use wide-band membrane absorbers, as discussed 
in Chapter 6, with a structure similar to that shown in Figure 6.48 with a 
limp membrane in place of the perforated sheet. Using this type of absorber 
it is possible to achieve sufficient wide-band absorption with a depth of 
30 cm, which allows this technique to be applied in much smaller rooms 
whose area is approximately 15 m2. Figure 7.13 shows a typical non-envi-
ronment room implementation: “The Lab”, at the Liverpool Music House

Because non-environment rooms have no reverberant field, there is no 
reverberant room support for the loudspeaker level, as discussed in Section 
6.1.7. Only the direct sound is available to provide sound level. In a normal 
domestic environment, as discussed in Chapter 6, the reverberant field is 
providing most of the sound power and is often about 10 dB greater than 
the direct sound. Thus in a non-environment room one must use either 10 
times the power amplifier level, or specialist loudspeaker systems with a 
greater efficiency, to reproduce the necessary sound levels (Newell, 2008).

7.1.8 the diffuse reflection room
A novel approach to controlling early reflections is not to try to suppress or 
redirect them, but instead diffuse them. This results in a reduced reflection 
level but does not absorb them.



3777.1 Critical Listening Room Design
In general most surfaces absorb some of the sound energy and so the 
reflection is weakened by the reflection. Therefore the level of direct reflec-
tions will be less than that which would be predicted by the inverse square 
law, due to surface absorption. The amount of energy, or power, removed by 
a given area of absorbing material will depend on the energy, or power, per 
unit area striking it. As the sound intensity is a measure of the power per 
unit area this means that the intensity of the sound reflected is reduced in 
proportion to the absorption coefficient. Therefore the intensity of the early 
reflection is given by:
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(7.1)

From the above equation (7.1), which is Equation 1.18 with the addition of 
the effect of surface absorption, it is clear that the intensity reduction of a 
specular early reflection is inversely proportional to the distance squared.

Shaded areas are wide-band absorber systems

(b) Vertical rear absorbers (a) Horizontal rear absorbers

Plan of “non-environment” control room

Side elevations of “non-environment” control room showing:

FIgUre 7.12
A non-environment control 
room. Shaded areas are 
wide-band absorbers (from 
Newell, 2008)
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Diffuse surfaces on the other hand scatter sound in other directions than 
the specular. In the case of an ideal diffuser the scattered energy polar pat-
tern would be in the form of a hemisphere. A simple approach to calculat-
ing the effect of this can be to model the scattered energy as a source whose 
 initial intensity is given by the incident energy. Thus, for an ideal scatterer, 
the intensity of the reflection is give by the product of the equation describing 
the intensity from the source and the one describing the sound intensity radi-
ated by the diffuser. For the geometry shown in Figure 7.14 this is given by:
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The factor 2 in the second term represents the fact that diffuser only radi-
ates into half a hemisphere and therefore has a “Q” of 2. From Equation 7.2  
one can see that the intensity of a diffuse reflection is inversely propor-
tional to the distance to the power of four. This means that the intensity of 
an individual diffuse reflection will be much smaller than that of a specular 
reflection from the same position.

So diffusion can result in a reduction of the amplitude of the early reflec-
tion from a given point. However, there will also be more reflections, due 
to the diffusion, arriving at the listening position from other points on the 
wall, as shown in Figure 7.15. Surely this negates any advantage of the tech-
nique? A closer inspection of Figure 7.15 reveals that although there are 

FIgUre 7.13
A non-environment room 
implementation: “The Lab,” 
at the Liverpool Music 
House (from Newell, 2008)
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many reflection paths to the listening point they are all of different lengths, 
and hence time delay. The extra paths are also all of a greater length than 
the specular path, shown dashed in Figure 7.15. Furthermore the phase 
reflection diffusion structure will add an additional temporal spread to the 
reflections. As a consequence the initial time delay gap will be filled with a 
dense set of low-level early reflections instead of a sparse set of higher level 
ones, as shown in Figure 7.16. Of particular note is that, even with no added 
absorption, the diffuse reflection levels are low enough in amplitude to have 
no effect on the stereo image, as shown earlier in Figure 7.9.

The effect of this is a large reduction of the comb filtering effects that high-
level early reflections cause. This is due to both the reduction in amplitude 
due to the diffusion and the smoothing of the comb filtering caused by the 
multiplicity of time delays present in the sound arriving from the diffuser. As 
these comb filtering effects are thought to be responsible for perturbations of 
the stereo image (Rodgers, 1981), one should expect improved performance 
even if the level of the early reflections is slightly higher than the ideal.

The fact that the reflections are diffuse also results in an absence of 
focusing effects away from the optimum listening position and this should 
result in a more gradual degradation of the listening environment away 
from the optimum listening position. Figure 7.17 shows the intensity of the 
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largest diffuse side wall reflection relative to the largest specular side wall 
reflection as a function of room position for the speaker position shown. 
From this figure we can see that over a large part of the room the reflec-
tions are less than 15 dB below the direct sound.
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Figure 7.18 shows one of the few examples of such a room. The experi-
ence of this room is that one is unaware of sound reflection from the walls: 
it sounds almost anechoic, yet it has reverberation. Stereo and multi-channel 
material played in this room has images that are stable over a wide listening 
area, as predicted by theory. The room is also good for recording in as the high 
level of diffuse reflections and the acoustic mixing it engenders, as shown in 
Figure 7.15, helps to integrate the sound emitted by acoustic instruments.

Summary
In this section we have examined various techniques for achieving a good 
acoustic environment for hearing both stereo and multi-channel music. 
However, the design of a practical critical listening room requires many 
detailed considerations regarding room treatment, sound isolation, air con-
ditioning, etc. that are covered in more detail in Newell (2008).

7.2 PUre-tONe AND SPeeCh AUDIOMetry

In this section, a number of acoustic and psychoacoustic principles are applied 
to the clinical measurement of hearing ability. Hearing ability is described 
in Chapter 2 and summarized in Figure 2.10 in terms of the frequency and 
amplitude range typically found. But how can these be measured in practice, 

FIgUre 7.18
A diffuse reflection room 
implementation: “Studio 
C,” at Blackbird Studio, 
Nashville. (Photo by Max 
Crace courtesy of George 
Massenburg and Blackbird 
Studio.)
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particularly in the clinic where such information can provide medical profes-
sionals with critical data for the treatment of hearing problems?

The ability to detect sound and the ability to discriminate between 
sounds are the two aspects of hearing that can be detrimentally affected by 
age, disease, trauma or noise-induced hearing loss. The clinical tests that 
are available for the diagnosis of these are:

n Sound detection: pure-tone audiometry.
n Sound discrimination: speech audiometry.

Pure-tone audiometry is used to test a subject’s hearing threshold at spe-
cific frequencies approximately covering the speech hearing range (see 
Figure 2.10). These frequencies are spaced in octaves as follows: 125 Hz, 
250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz. The range of sound levels 
that are tested usually start 10 dB below the average threshold of hearing 
and they can rise to 120 dB above it; recall that the average threshold of 
hearing varies with frequency (see Figure 2.10).

A clinical audiometer is set up to make diagnosis straightforward, and 
quick and easy to explain to patients. Because the threshold of hearing is a 
non-uniform curve and therefore not an easy reference to use on an everyday 
basis in practice, a straight line equating to the average threshold of hearing 
is used instead to display the results of a hearing test on an audiogram. A 
dBHL (hearing level) scale is defined for hearing testing, which is the num-

ber of dBs above the average threshold of hearing.
Figure 7.19 shows a blank audiogram which plots 

frequency on the x axis (the octave values between 
125 Hz and 8 kHz inclusive as shown above) 
against dBHL between 10 dBHL and 120 dBHL 
on the y axis. Note that the dBHL scale increases  
downwards to indicate greater hearing loss (a higher 
amplitude or greater dBHL value needed for the 
sound to be detected). The 0 dBHL (threshold of 
hearing) line is thicker than the other lines to give 
a visual focus on the average threshold of hearing 
as a reference against which measurements can be 
compared.

A pure-tone audiometer has three main con-
trols: (1) frequency; (2) output sound level; and (3) a 
spring-loaded output key switch to present the sound 
to the subject. When the frequency is set, the level  
is automatically altered to take account of the aver-
age threshold of hearing, which enables the output 
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sound level control to be calibrated in dBHL directly. The output sound 
level control usually works in 5 dB steps and is calibrated in dBHL. It is 
vitally important that the operator is aware that an audiometer can pro-
duce very high sound levels which could do permanent damage to a nor-
mal hearing system (see Section 2.5). When testing a subject’s hearing, a 
modest level around 30 dBHL should be used to start with, which can be 
increased if the subject cannot hear it.

The spring-loaded output key is used to present the sound, thereby giv-
ing the operator control of when the sound is being presented and removing 
any pattern of presentation that might allow the subject to predict when to 
expect the next sound. Such unpredictability adds to the overall power of the 
test, but, in the context of hearing measurement, it is particularly important 
when hearing is being tested in the context of, at one extreme, a legal claim 
for damages being made for hearing loss due to noise-induced hearing loss or, 
at the other, a health screening for normal hearing as part of a job interview.

When a sound is heard the subject is asked to press a button, which 
illuminates a lamp, or light emitting diode (LED), on the front panel of 
the audiometer. The subject should be visible to the tester, but the subject 
should not be able to see the controls. When carrying out an audiometric 
test, local sound levels should be below the levels defined in BS EN ISO 
8253-1, which are shown for the test frequencies in Figure 7.20. Generally, 
the local level should be below 35 dBA.
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During audiometry, test signals are presented in one of two ways:

n air conduction
n bone conduction.

For air conduction audiometry, sound is presented acoustically to the outer 
ear and thereby tests the complete hearing system. Three types of air con-
duction transducers are available:

 1. circum-aural headphones
 2. supra-aural headphones
 3. ear canal insert earphones.

Circum-aural headphones surround and cover the pinna (see Figure 2.1) 
completely thereby providing a degree of sound isolation. Supra-aural head-
phones rest on the pinna and are the more traditional type in use, but they 
are not particularly comfortable since they press quite heavily on the pinna 
in order to keep the distance between the transducer itself and the tym-
panic membrane constant. Both circum- or supra-aural headphones can 
be uncomfortable and somewhat awkward and they can in certain circum-
stances deform the ear canal. As an alternative, ear canal insert earphones 
that have a disposable foam tip can be used which will not distort the ear 
canal. They have the added advantage that less sound leaks to the other 
ear, which reduces the need to consider presenting a masking signal to it. 
There are, however, situations, such as infected or obstructed ear canals, 
when the use of ear canal insert earphones is not appropriate.

For bone conduction audiometry, sound is presented mechanically using 
a bone vibrator which is placed just behind but not touching the pinna on 
the bone protrusion known as the “mastoid prominence.” It is held in place 
with an elastic headband. The sound presented when using bone conduc-
tion bypasses the outer and middle ears since it vibrates the temporal bone 
in which the cochlea lies directly. Thus it can be used to assess inner func-
tion and the presence or otherwise of what is known as “sensorineural hearing 
loss” with no hindrance from any outer or middle ear disorder. Bone conduc-
tion is carried out in the same way as air conduction audiometry except that 
only frequencies from 500 Hz to 4 kHz are used due to the limitations of the 
bone conduction transducers themselves. When a bone conduction measure-
ment is being made for a specific ear it is essential that the other ear is masked 
using noise. Specific audiometric guidelines exist for the use of masking.

The usual audiometric procedure for air or bone conduction measure-
ments (recalling the one difference for bone conduction that the frequencies 
used are from 500 Hz to 4 kHz only) is to test frequencies (in the following 
order: 1 kHz, 2 kHz, 4 kHz, 8 kHz, 500 Hz, 250 Hz, 125 Hz, 1 kHz). (Note that. (Note that (Note that  
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the starting frequency is 1 kHz which is a mid frequency in the hearing 
range and is therefore likely to be heard by all subjects to give them confi-
dence at the start and end of a test.) If the retest measurement at 1 kHz has 
changed by more than 5 dB, other frequencies should be retested and the 
most sensitive value (lowest dBHL value) recorded. When testing one ear, 
consideration will be given as to whether masking should be presented to 
the other ear to ensure that only the test ear is involved in the trial. This is 
especially important when testing the poorer ear.

Tests are started at a level that can be readily heard (usually around 
30 dBHL), which is presented for 1–3 s using the output key switch, and then 
involve watching for the subject to light the lamp or LED. If this does not hap-
pen, the level is increased in 5 dB steps (5 dB being a minimum practical value 
to enable tests to be carried out in a reasonable time)—presenting the sound 
and awaiting a response each time. Once a starting level has been established, 
the sound level is changed using the “10 down, 5 up” method as follows:

 1. Reduce the level in 10 dB steps until the sound is not heard.
 2. Increase the level in 5 dB steps until the sound is heard.
 3. Repeat 1 and 2 until the subject responds at the same level at least 

50% of the time, defined as two out of two, two out of three or two 
out of four responses.

 4. Record the threshold as the lowest level heard.

There are a number of degrees of hearing loss, which are defined in Table 7.1.  
These descriptions are used to provide a general conclusion about a sub-
ject’s hearing and they should be interpreted as such. They consist of a 
single value which is the average dBHL value across frequencies 250 Hz to 
4 kHz. The values are used to provide a general guideline as to the state of 
hearing and it must be remembered that there could be one or more fre-
quencies for which the hearing loss is worse than the average.

Consider, for example, the audiogram for damaged hearing given in 
Figure 2.19. Here, the average dBHL value for frequencies 250 Hz to 4 kHz 

table 7.1 Definitions of different degrees of hearing loss

Description dBhL

No hearing handicap 20

Mild hearing loss 20–40

Moderate hearing loss 41–70

Severe hearing loss 71–95

Profound hearing loss 95
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would be {((10  55  15  60)/5)  19 dBHL} which indicates “no 
hearing handicap” (see Table 7.1), which is clearly not the case.

The upper part of Figure 7.21 shows audiograms for a young adult with 
normal healthy hearing within both ears based on air and bone conduction 
tests in the left and right ears (a key to the symbols used on audiograms is 
given in the figure). Notice that the bone and air conduction results lie in 
the same region (in this case 20 dBHL) and a summary statement of “no 
hearing handicap” (see Table 7.1) would be entirely appropriate in this case. 
Pure-tone audiometry is the technique that enables the normal deteriora-
tion of hearing with age, or presbycusis (see Section 2.3 and Figure 2.11) to 
be monitored.

The lower part of Figure 7.21 shows example audiograms for two hear-
ing loss conditions. The audiogram in the lower left position shows a con-
ductive hearing loss in the left ear because the bone conduction plot is 
normal, but the air conduction plot shows a significant hearing loss that 
would be termed a “moderate hearing loss” (see Table 7.1). This indicates 
a problem between the outside world and the inner ear, and a hearing aid, 
tailored to the audiogram, could be used to correct for the air conduc- 
tion loss.

The audiogram in the lower right position shows the effect on hearing 
of congenital rubella syndrome which can occur in a developing fetus of 
a pregnant woman who contracts rubella (German measles) from about 4 
weeks before conception to 20 weeks into pregnancy. One possible effect 
on the infant is profound hearing loss (95 dBHL—see Table 7.1), which is 
sensorineural (note that both the air and bone conduction results lie in the 
same region indicating an inner ear hearing loss). Sadly, there is no known 
cure; in this example, a hearing aid would not offer much help because 
there is no usable residual hearing above around 500 Hz.

Pure-tone audiometry tests a subject’s ability to detect different frequen-
cies, and the dBHL values indicate the extent to which the subject’s hearing 
is reduced at different frequencies. It thus indicates those frequency regions 
in which a subject is perhaps less sensitive than normally hearing listeners. 
This could, for example, be interpreted in practice in terms of timbral dif-
ferences between specific musical sounds that might not be heard, or vowel 
or other speech sounds that might be difficult to perceive. However, pure-
tone audiometry does not provide a complete test of a subject’s hearing 
ability to discriminate between different sounds. Discrimination of sounds 
does start with the ability to detect the sounds, but it also requires appro-
priate sound processing to be available. For example, if the critical bands 
(see Section 2.2) are widened, they are less able to separate the components 
of complex sounds—the most important to us being speech. In order to test 
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Air conduction (right ear):

Air conduction (left ear):

Unmasked bone conduction:

Masked bone conduction (right ear):

Masked bone conduction (left ear):

FIgUre 7.21 UPPER: Example audiograms for the left and right ears (left- and right-hand plots respectively) 
of a young adult with normal healthy hearing along with a key to the symbols commonly used on audiograms. 
LOWER: Example audiograms for (left) a left ear conductive hearing loss, and (right) a right ear hearing loss due to 
congenital rubella syndrome.
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hearing discrimination, speech audiometry is employed which makes use 
of spoken material.

Speech audiometry is carried out for each ear separately and tests speech 
discrimination performance against the pure-tone audiograms for each ear 
and normative data. When testing one ear, consideration will be given as to 
whether masking should be presented to the other ear to ensure that only 
the test ear is involved in the trial. This is particularly important when 
testing the poorer ear.

Speech audiometry involves the use of an audiometer and speech mate-
rial that is usually recorded on audio compact disc (CD). Individual single 
syllable words such as bus, fun, shop are played to the subject, who is asked 
to repeat them, providing part words if that is all they have heard. Each 
spoken response is scored phonetically in terms of the number of correct 
sounds in the response (for example, if bun or boss was the response for 
bus, the subject would score two out of three). Words are presented in sets 
of 10, and if a total phonetic score of 10% or better is achieved for a list, the 
level is reduced by 10 dB and a new set of 10 words is played, repeating the 
process until the score falls below 10%. The Speech Reception Threshold 
(SRT) is the lowest level at which a 10% phonetic score can be achieved. 
The Speech Discrimination Score (SDS) is the percentage of single syllable 
words that can be identified at a comfortable loudness level.

The results from speech audiometry indicate something about the abil-
ity to discriminate between sounds whereas pure-tone audiometry indicates 
ability to detect the presence of particular frequency components. Clearly 
detection ability is basic to being able to make use of frequency compo-
nents in a particular sound, but how a listener might make use of those 
components depends on their discrimination ability. Discrimination will 
change if, for example, a listener’s critical bands are widened, which can 
result in an inability to separate individual components. This could have a 
direct effect on pitch, timbre and loudness perception. In addition, the abil-
ity to hear separately different instruments or voices in an ensemble might  
be impaired—something that could be very debilitating for a conductor, 
accompanist or recording engineer.

7.3 PSyChOACOUStIC teStINg

Knowledge of psychoacoustics is based on listening tests in order to find out 
how humans perceive sounds in terms, for example, of pitch, loudness and 
timbre. Direct measurements are not possible in this context since direct  
connections cannot be made for ethical as well as practical reasons, and, in 
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many cases, there is a cognitive dimension (higher-level processing) that is 
unique to each and every listener. Our knowledge of psychoacoustics there-
fore is based on listening tests, and this section presents an overview of 
procedures that are typically used in practice. Apart from offering this as a 
background to the origins of the psychoacoustic information presented in this 
book, it also enables readers to think through aspects of the creation of their 
own listening tests to progress psychoacoustic knowledge in the future.

When carrying out a psychoacoustic test, it is important to note that the 
responses will be from the opinions of listeners; that is, they will be subjec-
tive, whereas an objective test involves a direct physical measurement such 
as dB SPL, Hz, or spectral components. There is no right answer to a sub-
jective test since it is the opinion of a particular listener and each listener 
will have an opinion that is unique; the process of psychoacoustic testing is 
to collect these listener opinions in a non-judgmental manner. Subjective 
testing is unlike objective testing where direct measurements can be made 
of physical quantities such as sound pressure level, sound intensity level or 
fundamental frequency; in a subjective test a listener is asked to offer an 
opinion in answer to questions such as “Which sound is louder?”, “Does”, “Does 
the pitch rise or fall?”, “Are these two sounds the same or different?”,”, “Are these two sounds the same or different?”,”, 
“Which chord is more in-tune?”, or “Which version do you prefer?”.”, or “Which version do you prefer?”.

Psychoacoustic testing involves careful experimental design to ensure 
that the results obtained can be truly attributed to whatever aspect of the 
signal is being used as the controlled variable. This process is called con-
trolled experimentation. A starting point for experimental design may well 
be a hunch or something we believe to be the case from our own listen-
ing experience, or from anecdotal evidence. A controlled experiment allows 
such listening experiences to be carefully explored in terms of which aspects 
of a sound affect them and how. Psychologists call a behavioral response, 
such as a listening experience, the dependent variable, and those aspects 
that might affect it are called the independent variables. Properly controlled 
psychoacoustic testing involves controlling all the independent variables so 
that any effects observed can be attributed to changes in the specific inde-
pendent variable under test.

7.3.1 Psychoacoustic experimental design issues
One experimental example might be to explore what aspects of sound affect 
the perception of pitch. The main dependent variable would be f0, but other 
aspects of sound can affect the perceived pitch such as loudness, timbre 
and duration (see Section 3.2). Experimentally, it would also be very appro-
priate to consider other issues that might affect the results—some of which 
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may not initially seem obvious—such as the fact that hearing abilities of 
the subjects can vary with age (see Section 2.3) and general health, or that 
perhaps subjects’ hearing should be tested (see Section 7.2).

The way in which sounds are presented to subjects can also make a  
difference since the use of loudspeakers would mean that the acoustics of 
the room will alter the signals arriving at each ear (see Chapter 6) whereas 
the use of headphones would not. There may be background acoustic noise 
in the listening room that could affect the results and this may even be 
localized, perhaps to a ventilation outlet. Subjects can become tired (lis-
tener fatigue), distracted, or may perform better at different times of the 
day. The order in which stimuli are presented can have an effect—perhaps 
of alerting the listener to specific features of the signal, which prepares 
them better for a following stimulus. These are all potential independent 
variables and would need proper controlling.

Part of the process of planning a controlled experiment is thinking 
through such aspects (the ones given here are just examples and are not 
presented as a definitive list) before carrying out a full test. It is common to 
try a pilot test with a small number of listeners to check the test procedure 
and for the presence of any additional independent variables. Some inde-
pendent variables can be controlled by ensuring they remain constant (for 
example, the ventilation might be turned off, and measures could be taken 
to reduce background noise). Others can be controlled through the test pro-
cedure (for example, any learning effect could be explored by playing the 
stimuli in a different order to different subjects or asking each listener to 
take the test twice with the stimulus order being reversed the second time).

7.3.2 Psychoacoustic rating scales
For many psychoacoustic experiments the request to be given to the listen-
ers is straightforward. In the pitch example above one might ask listeners 
to indicate which of two stimuli has the highest pitch or whether the pitch 
of a single stimulus was changing or not. In experiments where the objec-
tive is to establish the nature of change in a sound, such as whether one 
synthetic sound is more natural than another, it is not so easy. A simple  
“yes” or “no” would not be very informative since it would not indicate  
the nature of the difference. A number of rating scales have been pro-
duced that are commonly used in such cases, where the listener is invited 
to choose the point on the scale that best describes what they have heard. 
Some examples are given below.

When speech signals are rated subjectively by listeners, perhaps for 
the evaluation of the signal provided by a mobile phone or the output 
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from a speech synthesis system, it is usually the quality of the signal that 
is of interest. The number of listeners is important since each will have 
a personal opinion and it is generally suggested that at least 16 are used 
to ensure that statistical analysis of the results is sufficiently powerful. 
However, the greater the number of listeners the more reliable the results 
are. It is also most appropriate to use listeners who are potential users of 
whatever system might result from the work and listeners who are defi-
nitely not experts in the area. A number of rating scales exist for the evalu-
ation of the quality of a speech signal and the following are examples:

n absolute category-rating (ACR) test;
n degradation category-rating (DCR) test;
n comparison category-rating (CCR) test.

The absolute category-rating (ACR) test requires listeners to respond with a 
rating from the five-point ACR rating scale shown in Table 7.2. The results 
from all the listeners are averaged to provide a mean opinion score (MOS) 
for the signals under test. Depending on the purpose of the test, it might be 
of more interest to present the results of the listening test in terms of the 
percentage of listeners that rated the presented sounds in one of the catego-
ries such as good or excellent or poor or bad.

A comparison is requested of listeners in a degradation category-rating 
(DCR) test, and this usually involves a comparison between a signal before 
and after some form of processing has been carried out. The assump-
tion here is that the processing is going to degrade the original signal in 
some way, for example after some sort of coding scheme such as MP3 (see 
Section 7.8) has been applied, where one would never expect the signal to 
be improved. Listeners use the DCR rating scale (see Table 7.2) to evaluate 
the extent to which the processing has degraded the signal when comparing 

table 7.2  Rating scale and descriptions for the absolute category-rating 
(ACR) test, which produces a mean opinion score (MOS), and 
degradation category-rating (DCR) test, which produces a degraded 
mean opinion score (DMOS)

rating ACr description – MOS DCr description – DMOS

5 Excellent Degradation not perceived

4 Good Degradation perceived but not annoying

3 Fair Degradation slightly annoying

2 Poor Degradation annoying

1 Bad Degradation very annoying
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the processed version with the unprocessed original. The results are ana-
lyzed in the same way as for the ACR test and these are sometimes referred 
to as the “degradation mean opinion score” (DMOS).

In situations where the processed signal could be evaluated as being 
either better or worse, a comparison category-rating (CCR) test can be used. 
Its rating scale is shown in Table 7.3 and it can be seen that it is a symmet-
ric two-sided scale. Listeners are asked to rate the two signals presented in 
terms of the quality of the second signal relative to the first. The CCR test 
might be used if one is interested in the effect of a signal processing meth-
odology being applied to an audio signal, such as noise reduction, in terms 
of whether it has improved the original signal or not.

7.3.3 Speech intelligibility: Articulation loss
Psychoacoustic experiments may be used to define thresholds of perception 
and rating scales for small degradations, such as the quality of the sound. 
However, at the other end of the quality scale is the case where the deg-
radation, due to noise distortion, reverberation, etc., is so severe that it 
affects the intelligibility of speech. This is also measured and defined by the 
results of psychoacoustic experiments, but in these circumstances, instead 
of annoyance, the dependent variable is the proportion of the words that 
are actually heard correctly.

Two parameters are found to be important by those who work on 
speech: the “intelligibility” and the “quality,” or “naturalness,” of the 
speech. Both reflect human perception of the speech itself, and while they 
are most directly measured subjectively with panels of human listeners, 
research is being carried out to make equivalent objective measurements 
of these, because of the problems of setting up listening experiments and 

table 7.3  Rating scale and descriptions for the 
comparison category-rating (CCR) test

rating Description

3 Much better

2 Better

1 Slightly better

0 About the same

1 Slightly worse

2 Worse

3 Much worse
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the inherent inter- and intra-listener variability. The relationship between 
intelligibility and naturalness is not fully understood. Speech that is unin-
telligible would usually be judged as being unnatural. However, muffled, 
fast or mumbling speech is natural, but less intelligible, and speech that is 
highly intelligible may or may not be unnatural.

Subjective measures of intelligibility are often based on the use of lists 
of words that rhyme, differing only in their initial consonant. In a diagnos-
tic rhyme test (DRT), listeners fill in the leading consonants on listening to 
the speech, and often the possible consonants will be indicated. In a modified 
rhyme test (MRT) each test consists of a pair-wise comparison of acoustically 
close initial consonants such as feel–veal, bowl–dole, fought–thought, pot–tot. 
The DRT identifies quite clearly in what area a speech system is failing, giving 
the designers guidance on where they might make modifications. DRT tests 
are widely accepted for testing intelligibility, mainly because they are rigorous, 
accurate and repeatable. Another type of testing is “Logatom” testing.

In Logatom testing nonsense words such as “shesh” and “bik” are 
placed into a carrier phrase such as “Can con buy Logatom, e.g., “shesh” 
here also.” to ensure that they are all pronounced with the same inflec-
tion. The listener then has to identify the nonsense word and write it 
down. Using nonsense words has the advantage of removing the higher 
language processing that we use to resolve words with degraded quality and 
so provides a less biased measure. The errors listeners make show how the 
system being tested damages the speech, such as particular letter confu-
sions, and provide a measure of intelligibility. Typically lists of 50 or 100 
Logatoms are used as a compromise between accuracy and fatigue, as dis-
cussed earlier. Although in theory any consonant-vowel-consonant may be 
used, it has been the authors’ experience that rude or swear words must  
be excluded, because the talker usually cannot pronounce them with the 
same inflection as normal words.

All of these tests result in a measure of the number of correctly identified 
words. This, as a percentage of the total, can be used as a measure of intel-
ligibility, or articulation loss, respectively. As consonants are more impor-
tant in Western languages than vowels, this measure is often focused on  
just the consonants to form a measure called %ALcons (Articulation Loss; 
consonants) which is the percentage of consonants that are heard incor-
rectly. If this is greater than 15% then the intelligibility is considered to 
be poor. Although articulation loss is specific to speech—an important part 
of our auditory world—much music also relies on good articulation for its 
effect.

Subjective testing is a complex subject and could fill a complete book 
just by itself! For more details see Bech and Zacharov (2006).
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7.4 FILterINg AND eQUALIzAtION

One of the simplest forms of electronic signal processing is to filter the 
signal in order to remove unwanted components. For example, often 
low-frequency noises, such as ventilation and traffic rumble, need to be 
removed from the signal picked up by the microphone. A high-pass fil-
ter would accomplish this and mixing desks often provide some form of 
high-pass filtering for this reason. High frequencies also often need to be 
removed to either ameliorate the effects of noise and distortion or remove 
the high-frequency components that would cause alias distortion in digital 
systems. This is achieved via the use of a low-pass filter. A third type of fil-
ter is the notch filter, which is often used to remove tonal interference from 
signals. Figure 7.22 shows the effect of these different types of filter on the 
spectrum of a typical music signal.

In these cases the ideal would be to filter the signal in a way that mini-
mized any unwanted subjective effect on the desired signal. Ideally, in these 
cases the timbre of the sound being processed should not change after fil-
tering, but in practice there will be some effects. What are these effects and 
how can they be minimized in the light of acoustic and psychoacoustic 
knowledge?

The first way of minimizing the effect is to recognize that many musi-
cal instruments do not cover the whole of the audible frequency range. Few 
instruments have a fundamental frequency that extends to the lowest fre-
quency in the audible range and many of them do not produce harmonics 
or components that extend to the upper frequencies of the audible range. 
Therefore, in theory one can filter these instruments such that only the 
frequencies present are passed with no audible effect. In practice this is not 
easily achieved for two reasons:

n Filter shape: Real filters do not suddenly stop passing signal 
components at a given frequency. Instead there is a transition from 
passing the signal components to attenuating them, as shown in 
Figure 7.23. The cut-off frequency of a filter is usually expressed as 
the point at which it is attenuating the signal by 3 dB relative to the 
pass-band; see Figure 7.23. Thus if a filter’s cut-off is set to a given 
frequency there will be a region within the pass-band that affects the 
amplitude of the frequency components of the signal. This region 
can extend as far as an octave away from the cut-off point. Therefore, 
in practice, the filter’s cut-off frequency must be set beyond the 
pass-band that one would expect from a simple consideration of 
the frequency range of the instruments, in order to avoid any tonal 
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change due to change in frequency content caused by the filter’s 
transition region. As the order of the filter increases, both the slope 
of the attenuation as a function of frequency and the sharpness of 
the cut-off increase; this reduces the transition region effects, but 
unfortunately increases the time domain effects.

n Time domain effects: Filters also have a response in the time domain. 
Any form of filtering which reduces the bandwidth of the signal will 
also spread it over a longer period of time. In most practical filter 
circuits these time domain effects are most pronounced near the 
cut-off frequency and become worse as the cut-off becomes sharper. 
Again, as in the case of filter shape, these effects can extend well 
into the pass-band of the filter. Note that even the notch filter has 
a time response, which gets longer as the notch bandwidth reduces. 
Interestingly, particular methods of digital filtering are particularly 
bad in this respect because they result in time domain artifacts that 
precede the main signal in their output. These artifacts are easily 
unmasked and so become subjectively disturbing. Again, the effect 
is to require that the filter cut-off be set beyond the value that one 
would expect from a simple consideration of the frequency range of 
the instruments.

Because of these effects the design of filters that achieve the required filter-
ing effect without subjectively altering the timbre of the signal is difficult.
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The second way of minimizing the subjective effects is to recognize that 
the ear uses the spectral shape as a cue to timbre. Therefore the effect of 
removing some frequency components by filtering may be partially compen-
sated by enhancing the amplitudes of the frequency components nearby, as 
discussed in Chapter 5. Note that this is a limited effect and cannot be car-
ried too far. Figure 7.24 shows how a filter shape might be modified to pro-
vide some compensation. Here a small amount of boost, between 1dB andof boost, between 1dB and, between 1 dB and 
2 dB, has been added to the region just before cut-off in order to enhance 
the amplitude of the frequencies near to those that have been removed.

7.4.1 equalization and tone controls
A related, and important, area of signal processing to filtering is equaliza-
tion. Unlike filtering, equalization is not interested in removing frequency 
components but in selectively boosting, cutting or reducing them to achieve 
a desired effect. The process of equalization can be modeled as a process 
of adding or subtracting a filtered version of the signal from the signal, 
as shown in Figure 7.25. Adding the filtered version gives a boost to the 
frequencies selected by the filter whereas subtracting the filtered output 
reduces the frequency component amplitudes in the filter’s frequency range. 
The filter can be a simple high- or low-pass filter, which results in a treble 
or bass tone control, or it can be a band-pass filter to give a bell-shaped 
response curve. The cut-off frequencies of the filters may be either fixed or 
variable depending on the implementation. In addition the bandwidths of 
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the band-pass filters and, less commonly, the 
slopes of the high- and low-pass filters can be 
varied.

An equalizer in which all the filter’s param-
eters can be varied is called a parametric 
equalizer. However, in practice many imple-
mentations, especially those in mixing desks, 
only use a subset of the possible controls for 
both economy and simplicity of use. Typically 
in these cases, only the cut-off frequencies of 

the band-pass, and in some cases the low- and high-pass, filters are variable. 
There is an alternative version of the equalizer structure that uses a bank of 
closely spaced fixed frequency band-pass filters to cover the audio frequency 
range. This approach results in a device known as the “graphic equalizer” with 
typical bandwidths of the individual filters ranging from one-third of an octave 
to 1 octave. For parametric equalizers the bandwidths can become quite small.

Because a filter is required in an equalizer the latter also has the same 
time domain effects that filters have, as discussed earlier. This is particu-
larly noticeable when narrow-bandwidth equalization is used, as the associ-
ated filter can “ring,” as shown in Figures 1.62 and 1.63, for a considerable 
length of time in both boost and cut modes.

Equalizers are used in three main contexts (discussed below) which each 
have different acoustic and psychoacoustic rationales.

7.4.2  Correcting frequency response faults due to the recording 
process

This was one of the original functions of an equalizer in the early days 
of recording, which to some extent is no longer required because of the 
improvement in both electroacoustic and electronic technology. However, 
in many cases there are effects that need correction due to the acousticthat need correction due to the acousticdue to the acoustic 
environment and the placement of microphones. There are three common 
acoustic contexts that often require equalization:

n Close miking with a directional microphone: The acoustic bass 
response of a directional microphone increases, as it is moved close 
to an acoustic source, due to the proximity effect. This has the 
effect of making the recorded sound bass heavy; some vocalists often 
deliberately use this effect to improve their vocal sound. This effect 
can be compensated for by applying some bass-cut to the microphone 
signal and this often has the additional benefit of further reducing 
low-frequency environmental noises. Note that some microphones 

Input

Output

Proportion
(between �1)

Filter

Σ

FIgUre 7.25 Block diagram of tone control function.



3997.4 Filtering and Equalization
have this equalization built in but that in general a variable equalizer 
is required to fully compensate for the effect.

n Compensating for the directional characteristics of a microphone: 
Most practical microphones do not have an even response at all 
angles as a function of frequency. In general they become more 
directional as the frequency increases. As most microphones are 
designed to give a specified on-axis frequency response, in order to 
capture the direct sound accurately, this results in a response to the 
reverberant sound which falls with frequency. For recording contexts 
in which the direct sound dominates, for example close miking, 
this effect is not important. However, in recordings in which the 
reverberant field dominates, for example classical music recording, 
the effect is significant. Applying some high-frequency boost to the 
microphone signal can compensate for this.

n Compensating for the frequency characteristics of the reverberant 
field: In many performance spaces the reverberant field does not have 
a flat frequency response, as discussed in Section 6.1.7, and therefore 
subjectively colors the perceived sound if distant miking is used. 
Typically the bass response of the reverberant field rises more than 
is ideal, resulting in a bass heavy recording. Again the use of some 
bass-cut can help to reduce this effect. However, if the reverberation 
is longer at other frequencies, for example in the midrange, then the 
reduction should be applied in a way that complements the increase 
in sound level this causes. As in these cases the bandwidth of the 
level rise may vary, this must also be compensated for—usually by 
adjusting the bandwidth, or “Q,” of the equalizer.

All the above uses of equalization compensate for limitations imposed by 
the acoustics of the recording context. To make intelligent use of it in these 
contexts requires some idea of the likely effects of the acoustics of the space 
at a particular microphone location, especially in terms of the direct to 
reverberant sound balance.

7.4.3 timbre modification of sound sources
A major role for equalizers is the modification of the timbre of both acous-
tically and electronically generated sounds for artistic purposes. In this con-
text the ability to boost or cut selected frequency ranges is used to modify 
the sounds spectrum to achieve a desired effect on its timbre. For exam-
ple boosting selected high-frequency components can add “sparkle” to an 
instrument’s sound whereas adding a boost at low frequencies can add 
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“weight” or “punch.” Equalizers achieve these effects through spectral mod-
ification only: they do not modify the envelope or dynamics of a music sig-
nal. Any alteration of the timbre is purely due to the modification, by the 
equalizer, of the long-term spectrum of the music signal. There is also a 
limit to how far these modifications can be carried before the result sounds 
odd, although in some cases this may be the desired effect.

When using equalizers to modify the timbre of a musical sound it is 
important to be careful to avoid “psychoacoustic fatigue”—this arises because 
the ear and brain adapt to sounds. This has the effect of dulling the effect 
of a given timbre modification over a period of time. Therefore one puts  
in yet more boost, which one adapts to, and so on. The only remedy for 
this condition is to take a break from listening to that particular sound for 
a while and then listen to it again later. Note that this effect can happen at 
normal listening levels and so is different to the temporary threshold shifts 
that happen at excessive sound levels.

7.4.4 Altering the balance of sounds in mixes
The other major role is to alter the balance of sounds in mixes—in particular 
the placing of sound “up-front” or “back” in the mix. This is because the abil-
ity of the equalizer to modify particular frequency ranges can be used to make 
a particular sound become more or less masked by the sounds around it. This 
is similar to the way the singer’s formant is used to allow a singer to be heard 
above the orchestra as mentioned in Chapter 4. For example suppose one has 
a vocal line that is being buried by all the other instrumentation going on. 
The spectrum of such a situation is shown in Figure 7.26 and from this it is 
clear that the frequency components of the instruments are masking those of 
the vocals. By selectively reducing the frequency components of the instru-
ments at around 1.5 kHz, while simultaneously boosting the components in 
the vocal line over the same frequency range, the frequency components of 
the vocal line can become unmasked, as shown in Figure 7.27. This has the 
subjective effect of bringing the vocal line out from the other instruments.

Similarly, performing the process in reverse would further reduce the 
audibility of the vocal line in the mix. To achieve this effect successfully 
requires the presence of frequency components of the desired sound within 
the frequency range of the equalizer’s boost and cut region. Thus differ-
ent instruments require different boost and cut frequencies for this effect. 
Again it is important to apply the equalization gently in order to avoid sub-
stantial changes in the timbre of the sound sources.

Equalizers therefore have a broad application in the processing of sound. 
However, despite their utility, they must be used with caution—firstly to 
avoid extremes of sound character, unless that is desired, and secondly to 
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avoid unwanted interactions between different equalizer frequency ranges. 
As a simple example consider the effect of adding treble, bass and midrange 
boost to a given signal. Because of the inevitable interaction between the 
equalizer frequency responses, the net effect is to have the same spectrum 
as the initial one after equalization. All that has happened is that the 
gain is higher. Note that this can happen if a particular frequency range is 
boosted and then, because the result is a little excessive, other frequency 
ranges are adjusted to compensate.
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Spectrum of a masked 
soloist in the mix.
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7.5 PUBLIC ADDreSS SySteMS

Sound reinforcement of speech is often taken for granted. However, as any-
one who has tried to understand an announcement in a reverberant and 
noisy railway station knows, obtaining clear and intelligible speech rein-
forcement in a real acoustic environment is often difficult. The purpose of 
this section is to review the nature of the speech reinforcement problem 
from its fundamentals in order to clarify the true nature of the problem. 
We will examine the problem from the perspective of the sound source, the 
listener, and the acoustics. At the end you should have a clear appreciation 
of the difficulties inherent in reinforcing one of our most important, and 
sensitive, methods of communication.

There are several aspects of an acoustic space that affect the intelligibil-
ity of speech within it.

7.5.1 reverberation
As discussed in Chapter 6 (see Section 6.1.12), bigger spaces tend to have 
longer reverberation times and well-furnished spaces tend to have shorter 
reverberation times. Reverberation time can vary from about 0.2 of a sec-
ond for a small well-furnished living room to about 10 seconds for a large 
glass and stone cathedral.

There are two main aspects of the sound to consider:

n The direct sound: This is the sound that carries information and 
articulation. For speech it is important that the listener receive a large 
amount of direct sound if they are to comprehend the words easily. 
Unfortunately, as discussed in Chapter 1, the direct sound gets weaker 
as it spreads out from the source. Every time you double your distance 
from a sound source the level of the direct sound goes down by a 
factor of four, that is, an inverse square law. Thus the further away 
you are from a sound source, the weaker the direct sound component.

n The reverberant sound: The second main aspect of the sound is the 
reverberant part. This behaves differently to the direct sound, as 
discussed in Chapter 6. The reverberant sound is the same in all 
parts of the space.

The effect of these two aspects is shown in Figure 7.28. As one moves away 
from a source of sound in a space, the level of direct sound reduces but the 
reverberant sound stays constant. This means that ratio of direct sound to 
reverberant sound becomes less and so the reverberant sound becomes more 
dominant. The critical distance, where the reverberant sound dominates,  
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is dependent on both the absorption of the space and the directivity of the 
source. As the absorption and directivity increase so does the critical dis-
tance, but only proportionally to the square root of these factors. As dis-
cussed in Chapter 6 the critical distance is:
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7.5.2 the effect of reverberation on intelligibility
The effect of reverberation, and early reflections, is to mask the stops and 
bursts associated with consonants. They can also blur the rapid formant 
transitions that are also important cues to different consonant types. 
Clearly the degradation will depend on both the reverberation time and the 
relative level of the reverberation to the direct sound. One would expect 
longer reverberation times to be more damaging than short ones.

Because of the importance of consonants to intelligibility, it is therefore 
important to maintain a high level of direct to reverberant sound; ideally 
one should operate a system at less than the critical distance. There is an 
empirical equation that links the number of consonants lost to the charac-
teristics of the room (Peutz, 1971). As consonants occupy frequencies above 
1 kHz, and have very little energy above 4 kHz, this equation is based on 
the average reverberation time in the 1 kHz and 2 kHz octave bands.
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Up to D , 3.5Dc (at which point the Direct/Reverberation ratio  11 dB)
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For D  3.5Dc (where the Direct/Reverberation ratio is always worse than 
11 dB)

 %ALcons T a 9 60  (7.4b)

Note that when D is greater than 3.5Dc the intelligibility is constant.
The %ALcons is related to intellibility as follows. If:
%ALcons is less than 10% then the intelligibility will be very good;
 %ALcons is between 10% and 15% then the intelligibility will be 
acceptable;
%ALcons is greater than 15% then the intelligibility will be poor.
In order to achieve this one might think that placing more loudspeak-

ers in the space would be better, because this would place the loudspeakers 
closer to the listeners.

Notice that the %Alcons increases as the number of sources increases. 
This is counterintuitive because you would think that more loudspeak-
ers would mean they are closer to the listener and therefore should be  
clearer.

7.5.3  the effect of more than one loudspeaker  
on intelligibility

Unfortunately increasing the number of speakers decreases the intel-
ligibility, because only the loudspeaker that is closest to you provides the 
direct sound. All the other loudspeakers contribute to the reverberant field, 
and not to the direct sound! The net effect of this is to reduce the critical  
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distance and make the problem worse. If one assumes that all the loud-
speakers radiate the same power then the critical distance becomes:
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So, in this case, more is not better! Ideally one should have the minimum 
number of speakers, preferably one, needed to cover the space. When this 
is not possible, it is possible to regain the critical distance by increasing the 
“Q” of each loudspeaker in proportion to their number. This has its own 
problems, which will be discussed later.

The need to minimize the number of sources in the space has led to a 
design called the central cluster in which all the speakers required to cover 
an area are concentrated at one coherent point in the space. In general such 
an arrangement will provide the best direct to reverberant ratio for a space. 
Unfortunately it is not always possible, especially for large spaces.

7.5.4 the effect of noise on intelligibility
The effect of noise, like reverberation, is to mask the stops and bursts asso-
ciated with consonants. This is because the consonants are typically 20 dB 
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quieter than the vowels. They can also blur the rapid formant transitions, 
which are also important cues to different consonant types. Because of 
the importance of consonants to intelligibility it is therefore important to 
maintain a high signal to noise ratio.

Figure 7.29 shows how the intelligibility of speech varies according  
to the signal to noise ratio. From this figure we can see that a speech to 
background noise ratio of greater than 7.5 dB is required for adequate 
intelligibility. Ideally, a signal to noise ratio of greater than 10 dB is required 
for very good intelligibility. This assumes that there is minimal degradation 
due to reverberation.

Different types of noise have different effects on speech. For example, 
background noise that is hiss-like can be spectrally very similar to the ini-
tial consonants in sip or ship; periodic sounds such as the low-frequency 
drone of machines or vehicle tire noise can mask sounds with predomi-
nantly low-frequency energy such as the vowels in food or fun; sounds such 
as motor noise that exhibit a continuous whine can mask a formant fre-
quency region and reduce vowel intelligibility; short bursts of noise can 
either mask or insert plosive sounds such as the initial consonants in 
pin, tin, or kin; and broad-band noise can contribute to the masking of all 
sounds, particularly those which depend on higher-frequency acoustic cues 
(see Howard, 1991) such as the initial consonants in fun, shun, sun, and 
thump.

High levels of noise can mask important formant information. This is 
especially true of high levels of low-frequency noise that, as shown earlier 
in Chapter 5, can mask the important lower formants. As high levels of 
low-frequency and broad-band noise are often associated with transport 
noise, this can be a serious problem in many situations. More subtly, it is 
possible for speech that is produced at high levels to mask itself. That is, 
if the speech is too loud then, notwithstanding the improvement in sig-
nal to noise ratio, the intelligibility is reduced, because the low-frequency 
components of the speech mask the high frequency components, due to the 
upward spread of masking.

There may be situations where acoustic treatment may be essential 
before sound reinforcement is attempted. Interfering noises which have 
similar rates of variation as speech are particularly difficult to deal with 
as they fool our higher order processing centers into attending to them as 
if they are speech. Because of this their effect is often more severe than a 
simple measurement of level would indicate.

There may also be high levels of noise that cannot be controlled. In 
these circumstances it can sometimes be possible to increase intelligibility  
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by boosting the speech spectrum in the frequency regions where the inter-
fering sound is weakest, as discussed in Section 7.4, thus causing the 
desired speech to become unmasked in those regions and so enhancing the 
speech intelligibility.

7.5.5 requirements for good speech intelligibility
In general, for good intelligibility we require the following:

n The direct sound should be greater than, or equal to, the reverberant 
sound. This implies that the listener should be no further away than 
the critical distance.

n The speech to interference ratio should, ideally, be greater than 10 dB 
and no worse than 7.5 dB.

n The previous two requirements have the implication that the level of 
the direct sound should be above a certain level, that is, at least 10 dB 
above the background noise and equal to the reverberant sound level. 
For both efficiency and the comfort of the audience, this implies 
that the direct sound should be constant at this level throughout the 
coverage area.

Usually the only way of achieving this is to make use of the directivity 
of the loudspeakers used. This is because any other technique, such as 
reducing T60, tends to require major architectural changes and therefore 
considerable cost. However, sometimes this may be the only way of achiev-
ing a usable system. Sometimes communication can be assisted by using 
speakers with good elocution, especially female ones because their voices’ 
higher pitch tends to be less masked by the reverberation and noise typi-
cally present. Another possibility is to “chant” the message, which gives 
an exaggerated pitch contour that assists intelligibility. As a last resort one 
can use the international radiotelephony-spelling alphabet (Oscar, Bravo, 
Charlie . . .) to facilitate communication. Paradoxically electronic volume 
compression does not improve intelligibility; in many cases it makes it 
worse, because it can distort the syllabic amplitude variations that help us  
understand words.

These simple rules, outlined previously, must be considered in the light 
of the actual context of the system. Their apparent simplicity belies the 
care, analysis and design that must be used in order for practical systems to 
achieve their objectives.
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7.5.6 Achieving speaker directivity
If the major way of achieving a good quality public address system is to 
use directional loudspeakers, it is worth considering how this might be 
achieved. Ideally, speakers for public address systems should have a direc-
tivity that is constant with frequency; that is, the angles into which they 
radiate their sound energy remain the same over the whole audio spectrum.

There are two main ways of achieving this:

n The Array Loudspeaker: One way is to use a large number of 
speakers together as an “array loudspeaker.” With appropriate signal 
processing of the audio into these systems a good constant directivity 
performance can be achieved. With the advent of technologies that 
make this processing much easier such speakers are becoming more 
popular because of the flexibility they allow.

n The Constant Directivity Horn: This is the other main technique. It 
has a constant directivity above a specific frequency, or frequencies, 
and is simple and very efficient. It can convert about 25% of its 
electrical energy input into acoustic energy and is able to sustain 
outputs of around 10 W (130 dB) of acoustic power for long periods 
of time. Its main limitation is its low-frequency performance, which 
typically limits its frequency range to frequencies that are greater  
than 500 Hz.

However, irrespective of the technology used, there is a fundamental lower 
limit on the frequencies at which the speakers are directive that is deter-
mined by their size.

Recall that in Chapter 1 sound diffraction and scattering was dis-
cussed, in Sections 1.5.9 and 1.5.10, and we saw that the size of an object 
depended on its size in wavelengths. That is, sound is diffracted around 
objects that are small with respect to wavelength and is reflected from 
objects that are large with respect to wavelength. The same thing applies to 
loudspeakers.

Although a standard loudspeaker looks like it should radiate sound in the 
direction that its drivers are pointing, in practice it doesn’t. This is because 
at many frequencies it is small with respect to the wavelength; for example 
a 200 mm (8) loudspeaker will only start becoming directive at about 1 kHz! 
Note that the size of the box has very little influence; it is the size of the part 
that radiates the sound that matters. So we can consider any small loudspeaker 
to be similar to a torch or flashlight bulb without a reflector, irrespective of 
what it looks like!
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The equation that relates the minimum size of the radiating size of a 
speaker for a given directivity is:
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As an example, if one wanted a constant directivity horn that had a cover-
age of 90°  40° from 500 Hz then the mouth would have to be at least 
0.62 m for the 90° direction and 1.28 m for the 40° direction. This is not 
small! You can have a smaller horn but you must recognize that it will 
not have this coverage angle at 500 Hz. The sine of the 6 dB  point is 
inversely proportional to the frequency below Fθmin

; thus at an octave below 
Fθmin

  will be approximately double that desired, and so on, until  becomes 
greater than 90°, which implies the speaker is omnidirectional and has 
no directivity. In practice many commercially available directional speak-
ers have to make some form of compromise in the frequency range of the 
desired directivity.

However, beware of specmanship. One of the authors has seen a loud-
speaker advertised as having a constant directivity of 90°  60° using a 
horn whose mouth dimensions were 130  130 mm. This gives an Fθmin

 of 
2.4 kHz and 3.4 kHz respectively. As most human speech energy is between 
100 Hz and 5 kHz this speaker’s directivity is going to have very little influ-
ence on the intelligibility of the speech!

7.5.7 A design example: how to get it right
Now that we know, let’s look at how we would go about designing a PA 
system that has a good coverage. In order to do this we need to work out 
what level the sound will be some distance away from the loudspeaker. 
Fortunately this can be done very easily, as manufacturers provide a param-
eter called the speaker’s sensitivity. This measures the sound pressure level 
(SPL) emitted by a loudspeaker at one meter for 1 W of electrical power 
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input. Using this measure the sound pressure level (SPL) at a given dis-
tance from the loudspeaker is given by:
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Consider a room that is 30 m long by 12 m wide by 9 m high and with a 
T60  of 1.5 s at 1 kHz and 2 kHz. The audience’s ears start at 2.2 m away 
from the front wall and extend all the way to the back.

Making use of Equation 7.7 let us look at an example public address 
problem for several speaker arrangements.

exAMPLe 7.1

 A small speaker mounted at ear height.
Figure 7.30 shows a simple full-range speaker mounted at ear height and orientated  
to cover the entire audience area. The loudspeaker sensitivity is 94 dB per watt at 1 m.  
As the entire audience is “on-axis” there will be no variation in level due to speaker direc-
tivity; therefore, at the positions shown, the levels will be as shown in Table 7.4.

There is a huge SPL variation from front to back—22.7 dB! People in the front row are 
being deafened (one of the authors has seen people close to the speakers wince in a York 
church installation), while people in the rear row are straining to hear anything.

2.2 m 12 m 30 m

FIgUre 7.30 A simple speaker mounted at ear height.
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exAMPLe 7.2

A single constant directivity horn speaker 7.5 m above ear height.
Mounting the speaker higher up, as shown in Figure 7.31, reduces the path variations 
between the front and back row. By making the speaker directive we can ensure that more 
of the sound goes to the audience. However, we have to handle the low frequencies with a 
separate loudspeaker because of the frequency limitations of the constant directivity horn.

1 x 4060 horn + bass

14°

30°

30°

16°

2.2 m 7.8 m 30 m

30 m

7.5 m

FIgUre 7.31 A single 40°  60° constant directivity horn speaker mounted 7.5 m above ear 
height.

Unfortunately this is not an unusual situation. Furthermore, the critical distance for 
this speaker is 2.63 m! So the %Alcons for this space will be 15.5%. Note that adding 
more speakers does not make the problem any better. Instead it makes it worse, because 
the extra loudspeakers further reduce the critical distance. In fact in a typical multi-
speaker installation it is possible to show that an unaided human voice can be more intel-
ligible than the PA system, provided the speaker can project their voice sufficiently!

The problem is that the path length variation is too large (2.2–30 m) and this results in 
a very high SPL variation. The arrangement would also have a very poor direct to reverber-
ant ratio over most of the audience and would be prone to feedback. Let us see if using a 
more directive speaker mounted higher up can do any better.

table 7.4 Calculated SPL for a small full-range loudspeaker

Distance from front 2.2 m 12 m 30 m

Distance from speaker 2.2 m 12 m 30 m

Output for 1 watt 94 dB 94 dB 94 dB

Path attenuation 6.8 dB 21.6 dB 29.5 dB

SPL at the listener 87.2 dB 72.4 dB 64.5 dB
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Table 7.5 shows the results of doing this. Because of the lower variation in path 
length the path loss variation is lower: only 12 dB. However, the directivity of the loud-
speaker both helps and hinders the total SPL at the listener. For the front row it overcom-
pensates for the shorter path length and provides a slightly lower SPL there; unfortunately 
for the back row it adds to the path loss resulting in a lower SPL. The peak SPL variation 
is therefore 15.1 dB, which is better than the non-directive loudspeaker’s case, but still 
unacceptable.

Although better, the directivity of one speaker is not precise enough to obtain an even 
distribution. What we need is more control over the directivity. Ideally we want an “on-
axis” performance further down the audience. However, if we use a more directive horn 
then the front will suffer. So let’s see if by combining two horns to make a “central cluster” 
we can do better.

table 7.5  Calculated SPL for a single 40°  60° constant directivity horn 
speaker

Distance from front 2.2 m 7.8 m 30 m

Distance from speaker 7.8 m 10.8 m 30.9 m

Output for 1 watt 113 dB 113 dB 113 dB

Path attenuation 17.8 dB 20.7 dB 29.8 dB

Directivity effect 6 dB 0 dB 6 dB

SPL at the listener 89.2 dB 92.3 dB 77.2 dB

exAMPLe 7.3

two constant directivity horn speakers 7.5 m above ear height.
We need to cover 60 degrees of angle using two constant directivity horns. This can be 
achieved by using a 60°  40° combined with 40°  20° horn, as shown in Figure 7.32; 
the horns are aligned so that the 6 dB points of the two horns are at the same angle. 
Because the signals are adding coherently these 6 dB points can become equivalent 
to an on-axis level. Therefore the combine horn has three “on-axis” points on the audi-
ence: one at 5.4 m, due to the 60°  40° horn; one at 16.8 m due to the 40°  20° horn; 
and finally one at 11.1 m due to the two horns combined. Note that we still have only one 
source of sound in the room despite using two speakers. This is because they both radi-
ate sound energy from a single point.

Table 7.6 shows the results of doing this. Note that the 40°  20° horn has a higher 
sensitivity, because it is concentrating the sound into a smaller solid angle. Note that the level 
is now much more uniform—to about halfway down the audience the maximum variation 



4137.5 Public Address Systems
is 4.5 dB, or 2.25 dB. However, the rear row at 30 m is still 14.5 dB lower than the level at 
5.4 m, and this is still too much variation. One might be able to do better by using three horn 
loudspeakers, but this is getting more complicated and expensive. The main problem seems 
to be that the levels in the audience covered by the 40°  20° horn are lower than those in 
the area covered by the other horn. So, as a more economical solution, let’s try raising the 
power fed to the 40°  20° horn to 2.5 W, which is a 4 dB increase in level.

7.5.8 More than one loudspeaker and delays
Sometimes it is necessary to use more than one loudspeaker, for example 
to “fill in” a shaded under-balcony area, or cover a very wide area. In these 
situations the speakers should be as directive as possible so as to cover 
only the area required. This will minimize the amount of extra energy 

1 x 6040 horn + 1 x 4020 horn + bass

14°

20°

10°
10°

20°

16°

2.2 m 11.1 m 16.8 m5.4 m 30 m

30 m

7.5 m

FIgUre 7.32 A 60°  40° horn combined with 40°  20° horn at 7.5 m above ear height.

table 7.6  Calculated SPL for a 60°  40° horn combined with  
40°  20° horn

Distance from front 2.2 m 5.4 m 11.1 m 16.8 m 30 m

Distance from 
speaker

7.8 m 9.2 m 13.3 m 13.3 m 18.4 m 30.9 m

Output for 1 watt 113 dB 113 dB 113 dB 115 dB 115 dB 115 dB

Path attenuation 17.8 dB 19.3 dB 22.5 dB 22.5 dB 25.3 dB 29.8 dB

Directivity effect 6 dB 0 dB 6 dB 6 dB 0 dB 6 dB

SPL for each 
speaker

89.2 dB 93.7 dB 84.5 dB 86.5 dB 89.7 dB 79.2 dB

SPL at the listener 89.2 dB 93.7 dB 91.6 dB 89.7 dB 79.2 dB
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that is fed into the reverberant field. Electronic delay of the signal will 
often be required in order to match the acoustic delay. When this is used it 
should be set at about 15 ms greater than the acoustic delay. This has two 
advantages:

n Firstly, it allows the near speaker to be louder than the further one 
whilst giving the illusion that the sound is still coming from the 
further source via the Haas effect, as discussed in Chapter 2.

exAMPLe 7.4

two constant directivity horn speakers 7.5 m above ear height with more power to 
the horn covering the back.
Table 7.7 shows the results of doing this. Now the sound is more even within 0.15 dB 
from 5 m to 19 m in the audience. It drops at the front and the back, and the maximum 
variation is 10.8 dB. In practice the front row is likely to receive additional sound from the 

stage, thus boosting its level. In general it is not a good idea to try to make the rear row 
the same level because this means the rear wall must be on-axis to a loudspeaker, which 
means half that speaker’s energy is splashing off the back wall and contributing to either 
the reverberant field or causing interference effects at the back of the venue. The calcu-
lated %Alcons for this design is 11%, which is on the boundary between acceptable and 
very good intelligibility.

We should also consider the lateral coverage. In the final arrangement the horn cov-
ering the front of the audience covers a wider angular width. This matches the trapezoidal 
audience shape seen by a high central cluster.

table 7.7  Calculated SPL for 1 W to the 60°  40° horn combined with 
2.5 W to the 40°  20° horn

Distance from front 2.2 m 5.4 m 11.1 m 16.8 m 30 m

Distance from 
speaker

7.8 m 9.2 m 13.3 m 13.3 m 18.4 m 30.9 m

Output for 1 watt 113 dB 113 dB 113 dB 115 dB 115 dB 115 dB

Effect of 2.5 W to 
40°  20° horn

0 dB 0 dB 0 dB 4 dB 4 dB 4 dB

Path attenuation 17.8 dB 19.3 dB 22.5 dB 22.5 dB 25.3 dB 29.8 dB

Directivity effect 6 dB 0 dB 6 dB 6 dB 0 dB 6 dB

SPL for each 
speaker

89.2 dB 93.7 dB 84.5 dB 90.5 dB 93.7 dB 83.2 dB

SPL at the listener 89.2 dB 93.7 dB 94.0 dB 93.7 dB 83.2 dB
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n Secondly, any combing effects due to the combination of the near 
and far signal are of a close enough frequency spacing (67 Hz) to be 
averaged by the ear’s critical bands and so not affect the intelligibility.

7.5.9 Objective methods for measuring speech quality
%Alcons is a subjective/empirical formula that can be used as a means of 
estimating the speech intelligibility from architectural data. However, for 
specifying systems it is better to have an objective measure that can be 
assessed by some form of acoustic instrumentation. Objective methods for 
measuring speech quality make use of either an auditory model or a measure 
that is based on a measure that is sensitive to speech spectral variations.

The articulation index (AI), now called the speech intelligibility index 
(SII) (Pavlovic, 1987), objectively measures “articulation” in individual crit-
ical bands, which is defined as that fraction of the original speech energy 
perceivable (i.e., between the threshold of hearing and the threshold of 
pain, and above the background noise). The AI can be measured by averag-
ing the signal-to-noise ratio across all the bands. The validity of AI depends 
on the noise being non-signal dependent, which may not be the case with 
some processing. Also used are various measurements based on comparing 
the smoothed spectrum of the processed version with that of the original.

Another objective measure is the speech transmission index (STI) (IEC, 
2003) (Houtgast and Steeneken, 1985), which uses a modulation trans-
fer function approach to measure the effect of a given situation on speech 
intelligibility. It works for most forms of speech degradation and shows 
good correlation with subjective tests (Steeneken and Houtgast, 1994). It 
also has the advantage of being relatively easy to calculate, and so can be 
used in simulations to predict likely improvements in performance.

The criteria for STI and intelligibility are:

n 0.0  STI  0.4 intelligibility is poor
n 0.4  STI  0.6 intelligibility is fair
n 0.6  STI  0.8 intelligibility is good
n 0.8  STI  1.0 intelligibility is excellent.

It can also be measured, and the simpler STIpa and RaSTI methods that 
it replaces, are available as simple handheld instruments. For more details 
about public address system design see Ahnert and Steffen (1999).

7.6 NOISe-reDUCINg heADPhONeS

One important feature relevant to obtaining good quality audio listening is 
the relative levels of the wanted sound and unwanted sound such as local 
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background acoustic noise. In environments such as aircraft cabins where 
the ambient acoustic noise level is high, it is not easy to obtain good quality 
audio. This is particularly the case with the headphones provided to econ-
omy class travelers, which are generally of a low quality that distorts the 
sound when the volume is turned up sufficiently high to hear the music or 
film soundtrack. There is also the danger that the overall sound level being 
presented (wanted signal plus the unwanted background noise) could even 
cause noise-induced hearing loss (see Section 2.5) depending on the volume 
of the wanted signal that is set.

One way of reducing the overall sound level being presented in such sit-
uations is to reduce the level of the unwanted acoustic background noise 
being experienced. This has the added advantage of perhaps improving the 
sound quality of the wanted sound because it can then be presented at a 
lower level, thereby possibly avoiding any distortion issues due to a high 
signal presentation level.

There are two common methods that are used for acoustic background 
noise reduction:

 1. active noise cancellation
 2. passive noise cancellation.

Active noise cancellation is based on the fact that if a waveform is added to 
an equal and opposite (antiphase) version of itself, cancellation results (see 
Figure 1.13). Active noise cancelation is designed into headphones which 
have a microphone on the outside of each earpiece to pick up the local 
acoustic background noise on each side of the head. This is essentially the 
acoustic noise that is reaching each ear. This microphone signal is phase 
reversed and added at the appropriate level to cancel the background noise. 
The wanted signal is also added in and the result is that the background 
noise is significantly reduced in level, and the overall volume of the wanted 
signal can be reduced to a more comfortable listening level.

Passive noise cancellation can be achieved with in-ear earphones that 
seal well in the ear canal. The principle here is to block the ear canal to 
reduce the level of acoustic background noise that enters the ear canal 
using the same technique used for in-ear ear defenders. Usually there are a 
number (two or three) of soft rubber flanges which form a seal with the bor-
der of the ear canal to attenuate the level of acoustic background noise that 
can enter the ear. The wanted sound is played via the earphones which are 
mounted in the body of the earphones, and the level of the wanted sound 
can be reduced as with active noise cancelation. Once again this allows a 
more comfortable overall acoustic level to be achieved and lessens the like-
lihood of sound distortion.
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Both active and passive noise cancelation systems can work very effec-
tively and many people (including both authors!) tend to prefer the passive 
type because only the wanted sound is being presented to the ear and the 
sound itself is not being modified in any way.

In the active case, the wanted signal is having noise added to it – not 
something one really wants to be doing if one can avoid it. If the phase 
shift is not absolutely correct, complete noise cancelation will not occur, 
with the result that the wanted signal is then being further contaminated. 
Furthermore, because of the phase shift requirement, higher frequencies are 
not attenuated as effectively—something the passive types do very well.

However, both kinds can sound very good in practice and whilst the sound 
is being modified in the active version, this needn’t modify or distort the 
wanted sound. The passive types are somewhat intrusive as their presence 
in the ear canal is felt physically since the seal has to be complete to enable 
them to function well. One advantage of a good seal with the ear canal is that 
transmission of the low-frequencies components is significantly improved.

7.7  “MOSQUItO” UNItS AND “teeN BUzz”  
rINg tONeS

Sound is being used to deter young people from congregating in particular 
areas via devices termed “mosquito units” or “teen deterrents.” These devices 
play sounds at relatively high levels that can only be heard by young people, 
thereby making it acoustically unpleasant for them to remain in a particular 
area. They can be placed outside shops, restaurants and other public places 
to discourage young people from hanging around there. The devices exploit 
the natural change in hearing response that occurs with age known as “pres-
bycusis” (see Section 2.3) which causes a significant reduction in the ear’s 
ability to hear high frequencies (see Figure 2.11). The mosquito was invented 
by Howard Stapleton in 2005 and it was first marketed in 2006.

The nominal range of human hearing is usually quoted as being 
from 20 Hz to 20 kHz, but during a person’s twenties the upper frequency 
region reduces greatly in the range above about 16 kHz. The mosquito unit 
exploits this by emitting a sound between 16 and 19 kHz, which can only 
be heard by those less than 20–25 years of age. The usual range over which 
the mosquito operates as a deterrent is around 15–25 m. The UK National 
Physical Laboratory (NPL) conducted a test of the Mosquito (Ref E05110518, 
December 2005) in which they reported that the device presented:

n a mean f0 of 16.8 kHz;
n a maximum f0 of 18.6 kHz;



ChAPter 7: Applications: Acoustics and Psychoacoustics Combined418
n an A-weighted sound pressure level of 76 dBA at 3 m;
n no hearing hazard under the UK Control of Noise at Work 

Regulations (April, 2006).

These units have proved themselves to be successful deterrents, saving  
considerable police time and effort in moving on gatherings of young peo-
ple, and they are now used quite widely in public spaces. The unit will work 
in the presence of other sounds such as music, which typically contains no 
high-level energy at these high frequencies. Young people report these high-
level high-frequency sounds to be very annoying, unpleasant and irritating.

However, young people now benefit from this basic idea because it has 
now been used to provide mobile ring tones, sometimes known as “teen 
buzz,” that cannot be heard by older people. The original teen buzz was 
created by recording the output from a mosquito device, but nowadays 
there are plenty of synthesized downloadable teen buzz ringtones available 
on-line. In general, these ring tones are not audible to adults over 25 years 
of age, but this does depend on the overall amplitude of the sound and the 
rate of presbycusis change for given individuals.

An example mosquito tone is provided on the accompanying CD to 
demonstrate what it sounds like; the track has four pure tones rising in 
octaves to the mosquito average frequency of 16.8 kHz as follows: 2.1 kHz, 
4.2 kHz, 8.4 kHz and 16.8 kHz. Bear in mind when listening to this track 
that most youngsters will find the 16.8 kHz tone unpleasant; be cautious 
with the listening level.

7.8 AUDIO CODINg SySteMS

Many of the advances in the distribution of audio material via film, DVD, 
television and the Internet, and even on DVD-Audio or Super Audio CD 
(SA-CD) have been made possible because of developments in audio coding 
systems. Audio coding systems are methods that reduce the overall data 
rate of the audio signal so that it may be transmitted via a limited data rate 
channel, such as the Internet, or stored in a data limited storage medium, 
like a DVD. In all cases the ability to reduce the data rate is essential for 
the system. There are two types of audio coding system:

n Lossless audio coding systems: In these systems the data rate, or 
data quantity, is reduced but in such a way that no information is 
lost. That is, after coding and subsequent decoding, the signal that 
comes out is identical to the signal that went in. This is like audio 
computer data file “zip” compression. Examples of such systems 
are: Shorten, an early lossless format; MPEG4 ALS, FLAC, Apple 
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Lossless, examples of newer ones; and Direct Stream Transfer (DST) 
and Meridian Lossless Packing which are proprietary methods that 
are used in the SA-CD and DVD audio formats respectively. Lossless 
methods typically achieve a compression ratio of around 2 to 1.  
That is, the data size after compression is typically half the size of 
the input. The actual amount of compression achieved is dependent 
on the nature of the input audio signal itself (i.e., what kind of music 
it is or if it is speech) and can vary from about 1.5 to 1 to 3 to 1.

n Lossy audio coding systems: These systems make use of similar 
techniques to that of lossless coding but, in addition, reduce the 
data further by quantizing the signal to minimize the number of bits 
per sample. In order to achieve this with the minimum of perceived 
distortion, some form of psychoacoustic model is applied to control 
the amount of quantization that a particular part of the signal suffers. 
Because this type of coding removes, or loses, information from 
the audio signal it is known as a “lossy coding system.” Unlike the 
lossless systems these coders do not preserve the input signal; the 
output signal is not identical to the original input. The output signal 
is thus distorted but hopefully in a way that does not disturb and is 
inaudible to the listener. Examples of such systems are MPEG 1,  
MPEG 2, mp3, and MPEG 4, which are used on the Internet, in 
broadcasting and for DVDs. In the film world DTS, Sony-SDDS and 
Dolby AC3 are used to fit multiple channels onto standard film stock. 
The advantage of lossy coding is that it can compress the signal 
much more than a lossless system. For example, to achieve the 128 k 
bit data rate stereo audio that is used for mp3 coding of material on 
many music download sites, the audio signal has to be compressed 
by a factor of 11.025! This is considerably more than can be achieved 
by lossless compression.

So how do these systems work? What aspects of the audio signal allow one 
to losslessly compress the signal, and how can one effectively further reduce 
the data rate by doing psychoacoustic quantization?

7.8.1 the archetypical audio coder
Figure 7.33 shows the three archetypical stages in an audio coder. All mod-
ern audio coders perform these operations. The decoder essentially operates 
in reverse. The three stages are:

 1. A signal redundancy removal stage which removes any inter-sample 
correlations in the signal. In order to do this, the coder may have 
to send additional side information to the receive end. This stage 
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does not remove any information from the signal, it merely makes it 
more efficient and can therefore be considered to be lossless.

 2. A psychoacoustic quantization stage which allocates bits to the 
various components in the audio signal in a manner that has the 
minimum subjective distortion. Again, in order to do this it has to 
send additional side information to the decoder, such as the number 
of bits allocated to each signal component. This is the only stage 
that removes information from the signal and is therefore the only 
lossy stage in the whole process. It is this stage that makes the 
difference between a lossy and a lossless audio coding system. Note 
that although the decoder stage works in reverse to provide real 
audio levels at the levels quantized by the coder, it cannot restore the 
information that has been thrown away by the encoding quantizer.

 3. An entropy coding stage which tries to use the most efficient bit 
arrangement to transmit both the signal information and the side 
information to the decode end. This stage also does not remove any 
information from the signal and can also be considered to be lossless.

The purpose of these three stages is to maximize the amount of audio 
information transmitted to the receive end. So in order to understand how 
these stages work we need to understand what we mean by information 
and how it is related to the audio signal. Then we can unpack the function 
of the three stages in more detail.

7.8.2 What exactly is information?
What characteristics of a signal or data stream indicate information? For 
example, you are currently reading text in this book; what is it about the 
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text that is carrying information? The answer is that, as you read it, you 
are seeing new combinations of words that are telling you something you 
didn’t know before. Another way of looking at it is there is an element of 
novelty or surprise in the text. On the other hand, if, during a web chat, 
you got a message that said “hhhhhhhhhhhhhhhhhhhhhhhh . . .” it would 
be carrying no information, other than the possibility that the other per-
son has fallen asleep on the keyboard! So the more surprising a thing is 
the more information it carries. That is, the less probable something is the 
more information it carries. So:

 
Information Surprise

Probability of Occurring
∝ ∝

1
   

(7.8)

How does this relate to an audio signal? Well, consider a sine wave; it 
sounds pretty boring to listen to because it is very predictable. On the other 
hand, a piece of music that is jumping around, or an instrument whose 
texture is continuously changing, is much more interesting to listen to 
because it’s more unpredictable or surprising. If we looked at the spectrum 
of a sine wave we would find that all the energy is concentrated at one fre-
quency whereas for the more interesting music signal it’s spread over lots 
of frequencies. In fact the audio signal that carries the most information is 
either random noise, or a single spike that happens at a time you don’t or 
can’t predict. Interestingly, in both these cases the spectrum of the signal 
contains an equal amount of energy at all frequencies. Again, just like text, 
the more surprising a signal is the more information it carries.

So to maximize the information carried by our coded audio signal we 
first need to maximize the surprise value of the audio signal. This is done 
by the signal redundancy removal stage.

7.8.3 the signal redundancy removal stage
In Chapter 4 we saw that all musical instruments, including the human 
voice, could be modeled as a sound source followed by sound modifiers, 
which apply a filtering function. In the limit the source may be regular 
spaced impulses, for pitched instruments, a single pulse for percussion 
instruments, random noise for fricatives, or a combination of them all. A 
filter that combines the effect of the source with the acoustic effect of the 
instrument and output to shape the final sound then follows this. The effect 
of this filtering is to add correlation to the audio signal. Correlation implies 
that information from previous samples is carried over to the current 
sample, as shown in Figure 7.34. The basic principle behind redundancy  
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removal is that at a given time instant the audio signal will consist of two 
elements (as shown in Figure 7.34).

n Information about the previous signals that have passed through the 
filter. In principle the contribution of this to the overall signal can be 
calculated from knowledge of the signal that has already passed through 
the filter. That is, this contribution is predictable; this is shown by 
the different hatchings in the sample at time “t” in Figure 7.34 that 
correspond to the similarly hatched earlier samples.

n Information that is purely due to the excitation of the filter by the 
source. The contribution of this to the overall signal cannot be 
calculated from knowledge of the signal that has already passed 
through the filter and hence this contribution is not predictable, and 
is shown in black on Figure 7.34.

To maximize the information content of the signal we should aim to 
remove the predictable parts, because they can be recalculated at the receive 
end, and only encode the unpredictable part because this represents the 
new information.

This is what the correlation removal stage does. There are two different 
ways of doing this:

n Time domain prediction: This is the method used by most lossless 
encoding schemes, which calculates an inverse filter to one that has 
filtered the unpredictable parts of the signal. It is possible, using the 
method of linear prediction, to calculate the necessary inverse filter 
from the input data. This filter is then used to remove the correlated 
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components from the input signal, prior to coding the signal. At the 
decoder the original signal is recovered by feeding the decoded signal 
into the complementary filter, which then puts the correlations 
back into the signal. To do this the coder must send additional side 
information that specifies the necessary filter coefficients so that the 
decoder restores the correlation correctly. In addition, because the 
correlations within the signal vary with time, due to different notes and 
instruments, it is necessary to recalculate the required filter coefficients 
and resend them periodically. Typically this happens at about 50 to 100 
times a second. This type of system is known as a “forward adaptive 
predictor” because it explicitly sends the necessary reconstruction 
information forward to the decoder. There is an alternative known 
as a “backward adaptive predictor” that sends the necessary side 
information implicitly in the data stream, but it is seldom used.

n Frequency domain processing: This is the method used by most of the 
lossy audio coding schemes, which splits the audio spectrum into many 
small bands. In principle the smaller the better, but there is a limit 
to how far one can do this because smaller bands have a longer time 
response, as discussed in Chapter 1. It practice, due to the limitations 
imposed by temporal masking (see Chapter 5) the time extent of the 
signal is limited to 8–25 ms, which implies a minimum bandwidth of 
125–40 Hz. This technique removes correlation from the signal because 
although each band will have a different amplitude level, which implies 
correlation. These can be normalized by applying an appropriate scale 
factor to each band, which effectively removes correlation, and the 
narrower the bands are the more effective this removal can be. It also 
allows the coder to flag bands that contain no energy at all and therefore 
no information needs to be transmitted. These scale factors and unused 
band information need to be transmitted to the decoder and therefore 
represent additional side information to be encoded and transmitted to 
the decoder. The signal within the bands is also less correlated because, 
as the band gets narrower in frequency range, the spectrum within the 
band is more likely to be uniform, and thus approaches the desired 
white noise spectrum with zero correlation between samples. A further 
advantage of frequency domain processing is that it converts the audio 
signal into a form that makes it easy for psychoacoustic quantization to 
be efficiently applied.

The use of either a time or frequency domain method is possible, and their 
relative strengths and weaknesses are primarily determined by the applica-
tion. For example, the frequency domain approach fits well with psycho-
acoustic quantization algorithms – hence its choice for lossy coding systems.
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However, all signal redundancy removal schemes have to tread an 
uneasy balance between increasing their effectiveness, which requires more 
side information, and having sufficient resources to effectively encode the 
actual audio signal information.

7.8.4 the entropy coding stage
Although the entropy stage is the final stage in the coder, it is appropri-
ate to consider it now because in conjunction with the redundancy removal 
stage it forms the structure of a lossless encoder system. Entropy encoding 
works by maximizing the information carried by the bit patterns that repre-
sent the audio signal and the side information. In order to understand how 
it works we need to understand a little bit about how we measure informa-
tion and how entropy relates to information.

7.8.5 how do we measure information?
In order to measure the information content of a signal we need to know 
how likely it is to occur. However, we also want to be able to relate the 
information content to something real, such as the number of bits neces-
sary to transmit that information. So how could we measure information 
content in such a way that it is related to the number of bits needed to 
transmit it?

Consider a 3-bit binary digit. It has eight possible bit patterns, or sym-
bols, as shown in Table 7.8. Furthermore let’s assume that each possi-
ble symbol has the same one in eight probability of happening occurring 
(Psymbol  0.125). If we use the following equation:

I
P

I

symbol
symbol

symbolwhere  the self
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the probabilisymbol

( )
P  tty of that symbol occurring

the logarithm base , beclog2 2 aause  we are dealing in bits  

(7.9)

For any of the eight symbols shown in Table 7.8, the self-information is 3 
bits because they all have the same probability. However, if the probabil-
ity of a particular symbol was one, i.e., it was like our repeating “h” dis-
cussed earlier, the self-information would be zero. On the other hand, if 
the probability of one of the symbols was lower than one-eighth, for exam-
ple, one-hundredth or (0.01), then that symbol’s self-information would be 
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log2(1/0.01), which would equal 6.64 bits, which would mean that symbol 
was carrying more information than the other symbols.

Because the total probability of all the symbols must add up to one, 
if one symbol has a very low probability then the probability of the other 
symbols must be slightly greater to compensate. In the case of one symbol 
having a probability of one-hundredth, the other symbols taken all together 
will have to have a probability of Psymbol /  ( ( )) .99 7 100 0 141. This 
gives a self-information for all the other symbols of 2.83 bits per symbol. 
So in this case one symbol is worth more than 3 bits of information, but 
the other symbols are worth less than 3 bits of information. So one of the 
symbols is using the bits more efficiently than the other seven symbols.

To unravel this we must look at more than the self-information carried 
by each symbol. Instead we must look at the total information carried by 
all the symbols used in the data stream.

7.8.6 how do we measure the total information?
In the previous section we had the case of one symbol in the whole set of 
possibilities being very small and as a consequence the other seven sym-
bols had to have a higher probability, because the probability of all symbols 
being used has to be one. As an extreme case consider our person asleep on 
the keyboard who is sending the same symbol all the time. In this case the 
probability of the symbol being sent is one, and all other symbols have zero 
probability of being sent. The total information being sent by this source is 
zero bits. How can this be? Surely, if the probability is zero, then the self-
information of these symbols is infinite? In theory this might be true but, 
as these symbols are never sent, the total information is zero.

So in order to find out the total information of the source we need to 
incorporate not only the self-information of each symbol but also their 

table 7.8  Symbols associated with a 3-bit binary code

Binary code Symbol

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7
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probability of being sent. This gives the proportion of information that 
symbol actually carries as part of the whole data set. To do this we simply 
multiply the self-information of the symbol by the probability of that sym-
bol actually occurring. This gives the amount of information that symbol 
carries in proportion to the other symbols in the data source.
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This is also known as the “entropy” because the equation is analogous to 
one used to calculate entropy in physics. In general we are interested in the 
total information content, or entropy of the data source, because this gives 
us the minimum number of bits required to encode it. This is given by:
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Equation 7.11 shows that the way to calculate the entropy of a data source 
is to add up all the individual symbol entropies of that source.

Table 7.9 shows the calculated entropy for four different data sources—
the first three correspond to the examples that have been discussed already 
and the fourth represents the output of a 5-level audio signal. Notice that, 
except for the case of all symbols having equal probability, all the other 

table 7.9  Source entropies for a 3-bit binary code with different symbol 
probabilities

Binary code Symbol Uniform 
probability

One PSymbol 
equals 1

One PSymbol 
equals 0.01

PSymbol for 5 
levels

000 0 0.125 0 0.01 0.60

001 1 0.125 0 0.141 0.15

010 2 0.125 0 0.141 0.05

011 3 0.125 1 0.141 0.00

100 4 0.125 0 0.141 0.00

101 5 0.125 0 0.141 0.15

110 6 0.125 0 0.141 0.05

111 7 0.125 0 0.141 0.00

Source entropy (in bits) 3.00 0.00 2.79 1.70
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sources have a total source information, or entropy, of less than 3 bits. This 
is always true: the most efficient information source is one that uses all its 
possible symbols with equal probabilities. If we encoded the sources shown 
in Table 7.9 using a 3-bit binary code, then we would be wasting bits. In 
principle we could code the audio signal using only 1.7 bits, but how?

This is the idea behind entropy coding; what we need is a transmitted 
code that relates more closely to the entropy of each symbol.

7.8.7 entropy coding
In order to implement entropy coding we have to more closely match the 
number of bits we use for each symbol to the amount of information it 
carries. Furthermore, each codeword associated with the symbol must have 
an integer number of bits. The net result of this is that instead of using a 
fixed number of bits for each symbol we need to use a number of bits that 
is related to the information carried by that symbol. For example, we know 
that in a real audio signal the signal spends much more time at low ampli-
tudes than high amplitudes, so low amplitudes carry less information and 
should be encoded with fewer bits than high signal levels. This way fewer 
bits would be used, on average, to transmit the information. But how do we 
generate codes that have this desirable property? One simple way of doing 
it is by using a technique called Huffman coding, which is best illustrated 
by an example.

Consider the 5-level audio signal shown in column 6 of Table 7.9. At 
the moment we are using 3 bits of information to transmit an information 
source that only has 1.7 bits of information. How can we assign code words 
to the symbols such that the average data rate is closer to 1.7 bits? Firstly, 
we can recognize that three of the symbols are not used and hence can be 
ignored.

A Huffman code is generated by starting with the least probable symbol. 
The list of symbols is first sorted into a list of decreasing probability, as 
shown in Table 7.10. Then, working up from the lowest probability sym-
bol, a code is constructed by combining the probabilities together to form 
different levels that correspond to bits in the code. These bits are then used 
to select either a code word or the next level down, except for the longest/
lowest level, corresponding to the two lowest probability symbols in which 
the bit is used to select between a one and a zero.

By allocating a bit for each level, a variable length code is built up where 
a leading zero represents the beginning of a new code word, up to the maxi-
mum length of the codewords. This property makes the code comma free, 
which means it needs no additional bits to separate the variable code words 
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bits it uses and 
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by its probability 
of occurring. This 
gives that symbol’s 
average bit rate. 
Then, by adding up 
the average bit rate 
for all the symbols, 
you get the total 
average bit rate:

BitRate
P Bits
actual

symbol actual
All symbols



∑  

In our example the 
rate calculation 
becomes: 

BitRateactual
 
 

 

   
   

0 6 1
0 15 2 0 15 3
0 05 4 0 05 4

.
. .
. .

  
Which gives:

 bits symbol
actualBitRate 

1 75 1.



ChAPter 7: Applications: Acoustics and Psychoacoustics Combined428
from each other, thus maximizing the efficiency. A code word of length one 
is assigned to the most probable symbol and longer length code words are 
optimally assigned to the lower probability symbols.

Huffman coding is optimal in that it gets the code rate within one bit of 
the source entropy. However, because bits only come in integer multiples 
the efficiency for small symbol sets is quite low. In MPEG_1 layer 3 cod-
ers, some symbols are Huffman coded as pairs to allow a greater coding 
efficiency. However, there is a practical limit to the size of a Huffman code 
because the computation and the tables blow up exponentially in size and 
so become unfeasible. A more subtle limitation is that, for large symbol 
sets, it becomes very difficult to gather enough symbol statistics data with 
sufficient accuracy to generate a Huffman code.

In order to have longer symbol lengths, which allow greater coding effi-
ciencies, other approaches are used. Golomb Rice Codes use a predeter-
mined statistical distribution to remove the need for tables, thus allowing  
longer code words; they are used in some lossless encoding schemes. 
Another approach is Arithmetic Coding, which does not need predeter-
mined distributions but, by using the statistics of the symbols occurrence, 
can encode very long symbols and so approach the source entropy much 
more closely. For details about these and other entropy coding methods see 
Salomon (2007).

7.8.8 the psychoacoustic quantization stage
This is the stage that makes the difference between a lossless and a lossy 
coder. Again the actual signal processing can be carried out in either the 
time domain or the frequency domain. In both cases the process of adap-
tive quantization and noise shaping is used.

table 7.10 Forming a Huffman code for a 5-level audio signal

Symbol Source 
probability

Step 1 
(Level 4)

Step 2 
(Level 3)

Step 3 
(Level 2)

Step 4 
(Level 1)

huffman 
code

0 0.60 0.60 0.60 0.60 1.00 0

1 0.15 0.15 0.15 0.40 . . . 0 10

5 (1) 0.15 0.15 0.25 . . . 0 . . . 10 110

2 0.05 0.1 . . . 0 . . . 10 . . . 110 1110

6 (2) 0.05 . . . 1 . . . 1 . . . 11 . . . 111 1111

Source entropy 
(in bits)

1.70 Code formation; least significant bit 
first

Average 
bits/symbol

1.75
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7.8.9 Quantization and adaptive quantization
Quantization is the process of taking an audio, or video, signal and convert-
ing it to a discrete set of levels. The input to this process may be from a con-
tinuous audio signal, like the one you get from a microphone, or may be from 
an already quantized signal, for example, the signal from a compact disc. An 
important parameter is the number of levels in the quantizer. This is due to 
the fact that the act of quantization is lossy because it throws away informa-
tion. If the input signal is not exactly the same as the desired output then there 
will be an error between the input and the output, as shown in Figure 7.35.

Although the quantizer will pick the output level that causes minimum 
error, there will on average always be some error. This error adds noise and 
distortion to the signal and is often referred to as quantization noise. Ideally 
this noise should be random and often dither is added to ensure this. The 
effect of the error is to reduce the signal to noise ratio of the audio signal. 
If a binary word of Nbits bits is used to encode the audio signal, then the 
maximum signal to noise ratio is given by:
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For a 16-bit word (the CD standard), this gives a maximum signal to noise 
ratio of 96 dB. If you compare this signal to noise ratio with the idealized 
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masked thresholds in Figure 5.9 in Chapter 5, you will see that the quan-
tization noise will be masked over most of the audio band for loud signals. 
Although quantizers very often have a number of levels, that are powers of 2,  
such as 16, 256 or 65 536, because this makes best use of a binary word, 
there is no reason that other numbers of levels cannot be used, especially if 
entropy coding is going to be employed. In this case the maximum signal to 
noise ratio for an N level quantizer will be given by:
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In either case, the quantization error is uniform over the frequency range in 
the ideal case.

These maximum signal to noise calculations are assuming that both the 
signal and noise have a signal probability distribution that is uniform; that 
is, all signal levels within the range of the quantizer are equally possible. 
If one assumes a sine wave input at maximum level then the maximum 
signal to noise ratio is improved, by 1.76 dB, because a sine wave spends 
more time at higher levels. However, in general we do not listen to either 
sine waves or uniform random noise. We listen to signals that spend more 
time at low signal levels and this means that often the signal to noise ratio 
is worse than predicted by these equations.

Real signals often spend most of their time at low signal levels, but one 
has to design the quantizer to handle the maximum signal level, even if it 
isn’t used very often. This means that more bits are used than is strictly 
necessary most of the time. One way of reducing the number of bits needed 
to quantize an audio signal is to make the quantizer adapt to the level 
of the signal because loud signals mask weaker signals, as discussed in 
Chapter 5. This type of quantizer is known as an “adaptive quantizer,” and 
can save some bits. There are two main types of adaptive quantizer:

 1. Backward adaptive quantizers (Jayant, 1973): These make use: These make use These make use 
of the adapted output bits to drive the adaptation and so require 
no additional bits to be sent to the receive end. However, they 
are sensitive to errors and are not guaranteed to be overload-free. 
Although there are ways of mitigating these problems they are not 
often used in lossy compression systems.

 2. Forward adaptive quantizers: Look at a block of the input signal and 
then set a scale factor that makes maximum use of the quantizer. 
This type of adaptive quantizer is guaranteed to be free from 
overload and is more robust to errors. However, it needs some side 
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information—the scale factor—to be sent to the receive end, which 
clearly robs bits from the quantized signal samples. Therefore 
there is an uncomfortable balance that must be struck between the 
amount of side information and the number of levels in the adaptive 
quantizer. In particular, if the block is made longer then less scale 
values have to be sent to the receiver. But if the block is too long 
then the quantization noise may become unmasked, due to non-
simultaneous masking. So the block size is set typically within the 
range 8–25 ms to avoid this happening. There is also an issue about 
the scale precision. The minimum scale precision is 6 dB which 
allows for a very simple implementation, but there is a possibility 
that only just over half the quantizer’s range is used because if the 
input has a sample that is just over half the quantizer’s range then 
the scale would set to that case, as the next lower scale value would 
result in an overload. Increasing precision of the scale factor would 
allow a greater proportion of the quantizer to be used on average, 
but would require the scale value to have a longer word length to 
handle the increased precision. This increases the amount of side 
information that must be sent to the receiver. MPEG uses finer scale 
factors of 1.5 dB to 2 dB.

Adaptive quantizers attempt to make the input signal statistics match the 
ideal uniform distribution for maximum signal to noise. However, even with 
fine-scale steps this is rarely achieved and there is still a tendency for the 
small signal levels to be more probable. Furthermore, the higher levels may 
have a better signal to noise ratio than is strictly necessary for masking.

One solution to this is to use non-uniform quantization, sometimes 
called non-linear quantization, in which the levels are not equally spaced. 
By having the less probable higher levels further apart, the increased 
quantization error that results is more likely to be masked by the signal, 
and, because it’s less probable, the average signal to noise level does not 
increase. In fact, for a given number of levels the average signal to noise 
reduces because the more likely levels are closer together and thus generate 
less quantization noise. MPEG-1 layer 3 uses a non-uniform quantizer to 
quantize the filtered signal samples.

However, even if an adaptive quantizer is used, then, because of the 
uniform spectrum of the quantization noise, the overall noise becomes 
unmasked if the signal to noise ratio falls below about 60 dB. This corre-
sponds to 10 bits of quantizer precision. In order to do better we need to 
arrange for the noise to be shaped so that it is less perceptible.
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7.8.10 Psychoacoustic noise shaping
As discussed in Chapter 2, our threshold of hearing is not constant with 
frequency, as shown in Figure 2.14. We are much more sensitive to sounds 
around 4 kHz than at the extremes of the frequency range. Therefore a uni-
form quantization spectrum may be more inaudible at low and high fre-
quencies and yet still be heard if it is above the threshold of hearing in 
the most sensitive part of our hearing range. Ideally we need to have more 
noise where we are less sensitive to it and less noise where we are more 
sensitive. This is possible via a technique known as “noise shaping.”

Figure 7.36 shows the block diagram of a noise-shaping quantizer. In it 
the quantization error is extracted, fed back via a noise-shaping filter and 
subtracted from the input. The effect of this can be analyzed as follows, 
assuming that the output of a quantizer can be considered to be the sum of 
the input signal and the quantization error.

 
Quantizer Quantizer Error Erroroutput input  N z( )

 
(7.14)

Which gives:

 
Quantizer Quantizer Erroroutput input  ( ( ))1− N z

 
(7.15)

Equation 7.15 shows that the quantizer’s error is shaped by the filter function 
(1  N(z)). It is possible to design this filter to reduce the noise within the 
most sensitive bit of our hearing range. This technique is used to improve the 
quality of sounds on a CD. An example is Sony Super Bit Mapping (Akune  
et al., 1992), which uses psychoacoustic noise shaping to give an effective sig-
nal to noise ratio of 120 dB (20 bits) in our most sensitive frequency range.

7.8.11 Psychoacoustic quantization
Although noise shaping provides a means of psy-
choacoustically shaping the quantization noise, it 
is difficult to achieve very low bit rates using it. In 
particular one needs to be able to avoid transmit-
ting information in frequency regions that either 
contain no signal, or are masked by other signal 
components. To do this easily one must work in 
the frequency domain.

Figure 7.37 shows the block diagram of a 
lossy audio coder. Ideally the time to frequency 
mapping splits the signal up into bands that are 
equal to, or smaller than, the width of our critical 

Quantizer
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Quantizer
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Quantizer

Error

Noise-shaping filter

N(z)

– +

+
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FIgUre 7.36 Block diagram of a noise-shaping 
quantizer.
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bands. Unfortunately for some audio coders this is not true at the lower 
frequencies.

The psychoacoustic quantization block is now replaced by a bit alloca-
tion and quantization block, which is driven by a psychoacoustic model 
that allocates the number of quantization levels for each frequency band, 
including zero for no bits allocated. Psychoacoustic models can be quite 
complicated and are continuously evolving. This is because most lossy 
audio coding systems define how the receiver interprets the bit stream to 
form the audio output, but leave how those bits are allocated the bit alloca-
tion to the encoder. This is clever because it allows the encoder to improve, 
as technology and knowledge get better, without having to alter the decoder 
standard. This is an important consideration for any audio delivery format.

However, regardless of the psychoacoustic bit allocation algorithm, 
they all effectively convert the linear frequency scale of the discrete Fourier 
transform into a perceptually based frequency scale similar to the ERB scale 
shown in Figure 5.10. Most use the Bark scale, which is similar but is based 
on the earlier work of Zwicker. Both scales are quasi-logarithmic and convert 
simultaneous masking thresholds into approximately straight lines.

Using some form of simultaneous masking model masking curves, 
which are different for tonal and non-tonal sounds, a signal to mask-
ing ratio (SMR) is calculated and the bits allocated such that components 
that need a high SMR are given more bits than those that have a lower 
SMR. For components that have a negative SMR no bits are allocated 
because these components are masked and therefore need not be transmit-
ted. The amount of bits that can be allocated depends on the desired bit 
rate. Also, the process interacts with itself so this process usually is inside 
some form of optimization loop that minimizes the total perceptual error. 

Time to
frequency
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Audio
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Signal
information

Side
information

Discrete Fourier
transform and

psychoacoustic
model

Psychoacoustic
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quantization
(lossy)
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FIgUre 7.37 Block diagram of a lossy audio coder.
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For more information the book by Marina Bosi (Bosi and Goldberg, 2003), 
one of the developers of current lossy coding systems, provides a wealth of 
information.

7.9 SUMMAry

This chapter has looked at a variety of applications that combine both 
acoustic and psychoacoustic knowledge to achieve a specific audio objec-
tive. The need to combine both these aspects of this knowledge to achieve 
useful results, and the diversity of applications are what make this subject 
so exciting! As we write, acoustics is being applied to many more areas 
that affect our everyday life directly, for example the noise caused by wind 
farms, acoustic screening between individual working spaces in open office 
areas, and the design of urban public spaces that not only look nice but also 
sound good. Our hearing is one of our most precious senses, and it good to 
see that, as we become more technologically sophisticated, we are coming 
to realize that, for our human existence, sound really matters!

reFereNCeS

Ahnert, W., Steffen, F., 1999. Sound Reinforcement Engineering: Fundamentals and 
Practice. Spon, London. 

Bech, S., Zacharov, N., 2006. Perceptual Audio Evaluation – Theory, Method and 
Application. Wiley. 

Bosi, M., Goldberg, R.E., 2003. Introduction to Digital Audio Coding and 
Standards, second edn. Springer, NY and London.NY and London.. 

D’Antonio, P., Konnert, J.H., 1984. The RFZ/RPG approach to control room moni-
toring. Audio Engineering Society 76th Convention, October, New York, USA, 
preprint #2157.

Davies, D., Davies, C., 1980. The LEDE concept for the control of acoustic and 
psychoacoustic parameters in recording control rooms. J. Audio Eng. Soc. 28 (3), 
585–595 (November). 

Houtgast, T., Steeneken, H.J.M., 1985. The MTF concept in room acoustics and its 
use for estimating speech intelligibility in auditoria. Journal of the Acoustical 
Society of America. 77, 1069–1077. 

Howard, D.M., 1991. Speech: measurements. In: Payne, P.A. (Ed.), Concise 
Encyclopaedia of Biological and Biomedical Measurement Systems. Pergamon 
Press, Oxford, pp. 370–376. 

IEC 60268-13:1998, BS 6840-13:1998 (2003). Sound system equipment.BS 6840-13:1998 (2003). Sound system equipment.  
Listening tests on loudspeakers IEC standard n. 60268-16. Sound System 
Equipments – Objective rating of speech intelligibility by speech transmission 
index, July 2003.

IEC standard n. 60268-16. Sound System Equipments – Objective rating of speech 
intelligibility by speech transmission index, July 2003.



435References
ISO/TR 4870:1991 Acoustics—The construction and calibration of speech intel-
ligibility tests.

Jayant, N.S., 1973. Adaptive quantization with a one-word memory.  
Bell Systems Technical Journal. 52, 1119–1144 (September). 

Newell, P., 2008. Recording Studio Design, second edn. Focal Press, Oxford. 

Pavlovic, C.V., 1987. Derivation of primary parameters and procedures for use in 
speech intelligibility predictions. Journal of the Acoustical Society of America. 
82, 413–422. 

Peutz, 1971. Articulation loss of consonants as a criterion for speech transmission 
in a room. J. Audio Eng. Soc. 19 (11), 915–919; December.

Rodgers, C.A.P., 1981. Pinna transformations and sound reproduction. J. Audio 
Eng. Soc. 29 (4), 226–234 April. 

Rumsey, F., 2001. Spatial Audio (Music Technology Series). Focal, Oxford. 

Salomon, D., 2007. Data Compression: The Complete Reference, fourth edn. 
Springer, New York & London. 

Toole, F. E., 1990. Loudspeakers and Rooms for Stereophonic Sound Reproduction. 
In: The Proceedings of the Audio Engineering Society 8th International 
Conference, The Sound of Audio, Washington, DC, 3–6 May, pp. 71–91.

Walker, R., 1993. A new approach to the design of control room acoustics  
for stereophony. Audio Engineering Society Convention, preprint  
#3543, 94.

Walker, R., 1998. A controlled-reflection listening room for multichannel sound. 
Audio Engineering Society Convention, preprint #4645, 104.

FUrther reADINg

Akune, M., Heddle, R., Akagiri, K., 1992. Super bit mapping: psychoacoustically 
optimized digital recording. Audio Engineering Society Convention 93, preprint 
# 3371.

Angus, J.A.S., 1997. Controlling early reflections using diffusion, Audio Engineering 
Society 102nd Convention, 22–25 March, Munich, Germany, preprint #4405.

Angus, J.A.S., 2001. The effects of specular versus diffuse reflections on the fre-
quency response at the listener. J. Audio Eng. Soc. 49 (3), 125–133 (March). 

ANSI S3.5-1997, American National Standard Methods for Calculation of the 
Speech Intelligibility Index. American National Standards Institute, New York. 

Holman, T., 1999. 5.1 Surround Sound. Focal Press, Boston. 

Newell, P., 1995. Studio Monitoring Design. Focal Press, Oxford. 

Newell, P., 2000. Project Studios: A More Professional Approach. Focal Press, Oxford. 

Schroeder, M.R., 1975. Diffuse sound reflection by maximum-length sequences.  
J. Acoust. Soc. Am. 57 (January), 149–151. 

Schroeder, M.R., 1984. Progress in architectural acoustics and artificial reverbera-
tion: concert hall acoustics and number theory. J. Audio Eng. Soc. 32 (4), 194–
203 April. 



ChAPter 7: Applications: Acoustics and Psychoacoustics Combined436
Steeneken, H.J.M. and Houtgast, T., 1994. Subjective and objective speech intelligi-
bility measures. Proceedings of the Institute of Acoustics, 16(4), 95–112.

Toole, F., 2008. Sound Reproduction: the Acoustics and Psychoacoustics of 
Loudspeakers and Rooms. Focal Press, Oxford. 

Walker, R., 1996. Optimum dimension ratios for small rooms. Audio Engineering 
Society Convention, preprint #4191, 100.



437

Acoustics and Psychoacoustics
Copyright © 2009 Elsevier Ltd. All rights of reproduction in any form reserved.2009

A1.1  Fourier’s theorem

Jean Baptiste Joseph Fourier (1768–1830) worked on a mathematical model 
of heat transfer in solid bodies (amongst many other topics). His thesis On 
the Propagation of Heat in Solid Bodies was published in 1807 and con-
tained a novel idea for expanding a continuous function as a trigonomet-
ric series. Although Fourier developed this as a part of his model for heat 
transfer, it has a much wider application. Fourier’s theorem is now usually 
stated as:

Any periodic function can be represented as an infinite sum of 
harmonic sinusoids multiplied by appropriate coefficients.

Appendix 1: the Fourier transform
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Mathematically, this is expressed as:
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The periodic function f(t) has a period T0 such that:
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The sum of the sines and cosines on the right-hand side (RHS) of Equation 
A1.1 is called a Fourier series. The sinusoids are harmonic. This means 
that all their frequencies are integer multiples of the lowest, or fundamen-
tal, frequency 0.

Equation A1.1 states that, provided we know the correct values for the 
amplitudes of the sinusoids an and bn, we can add them up and make any 
periodic signal f(t) we like. Different signals will need different values for an 
and bn. The act of summing the harmonic sinusoids together to make a sig-
nal is called Fourier synthesis. However, we may need an infinite number of 
harmonics to represent the signal properly. Examples of Fourier synthesis, 
with their corresponding spectra, were shown in Chapter 1 in Figures 1.50, 
1.51 and 1.52 respectively.

These figures also show the effect of not having enough coefficients. We 
would need an infinite amount to have something that really looked like a 
square wave.

For the square wave shown in Figure 1.50, its Fourier series coefficients are:
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A1.1.1  Frequency spectrum
Plotting the magnitude of the coefficients of the Fourier series gives us its 
frequency spectrum. This is shown in Figure 1.51.

The frequency spectrum tells us how much energy the signal has at any 
particular harmonic. We can convert Figure 1.51 to a real frequency in Hz 
simply by multiplying each value of relative frequency, F, by the fundamen-
tal frequency, f0.

We can see that the square wave has a lot of energy at the fundamen-
tal frequency (F  1). But the amplitude of the other harmonics decreases 
quite slowly with frequency. In fact, the harmonic amplitude decreases as 
1/F. This slow decay rate is closely associated with the way the square wave 
looks and how it sounds. A spectrum that falls off as 1/F is always associated 
with a signal with a discontinuity, and, if its periodic, it will sound “buzzy.”

Odd and even functions
There’s something else that’s interesting about the Fourier series of the 
square wave. Half of its coefficients are zero: all the values of an  0. This is 
because the square wave is an odd function. An odd function is one in which 
f(t)  f(t); at any given negative value of t the function is the negative of 
what it is at the corresponding positive value of t. Look at the square wave 
again and you’ll see that this is true. Any cosine terms in the Fourier series 
would ruin this property because the cosine is not an odd function. On the 
other hand, an even function of time, satisfying f(t)  f(t), can have only 
cosine terms in its Fourier series.

However, there are many functions that are neither odd nor even. They 
will have both a sine and a cosine part to their Fourier series. So in order to 
plot the magnitude frequency spectrum in this case we must combine the 
two coefficients together as follows:

 
C

a b
n

n n
2 2

2  
(A1.4)

A1.2  Fourier ANAlysis

The Fourier coefficients discussed earlier are not found by trial and error. 
Fourier also developed equations for extracting them. For any periodic function,  
f(t) the harmonic coefficients a0, an and bn can be found from:
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A1.3  the ComPlex Fourier series

Like many things in acoustics, dealing with the Fourier series in trigono-
metric form is messy and inconvenient. For example calculating the Fourier 
series coefficients using the equations in A1.5 requires that we do three 
integrals! However, by using a complex number theory we can combine the 
sine and cosine together to form a complex exponential.

 e jj   cos sin  (A1.6)

Where  is in radians.
This allows us to express the Fourier series as a complex exponential as 
follows:
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Where the now, in general complex coefficients Cn are calculated by:
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Although in general the coefficients Cn are complex. If the waveform has 
odd symmetry then resulting coefficients Cn will be purely imaginary (the 
sine bit), whereas for even symmetry they will be purely real (the cosine bit).

Equations A1.7 and A1.8 can be used instead of Equations A1.1 and 
A1.5. They also have a further advantage in that when we do a Fourier 
analysis using Equation A1.4 on a periodic signal, which is neither odd nor 
even, we end up with two sets of coefficients: the an’s and the bn’s. But 
when we listen to a periodic sound we only hear one frequency spectrum. 
Therefore to work out this spectrum we have to combine the an’s and the 
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bn’s to get the total contribution at each frequency, as shown in Equation 
A1.4.

However, the complex exponential form of the Fourier series automati-
cally gives us a single complex value for the coefficients and by finding their 
absolute values, or modulus, we get the magnitude of the spectrum, which 
is usually more perceptually relevant to the listener’s appreciation of timbre. 
On the other hand the phase of the signal f(t) at each harmonic frequency is 
given by the argument of each of the complex coefficients Cn.

A1.4   FrequeNCy ANAlysis oF NoN-PerioDiC 
sigNAls: the Fourier trANsForm

The Fourier series is useful for analyzing periodic signals. However, many 
signals are non-periodic – that is, only occur once. This requires a different 
approach.

We can consider a single instance of a waveform as being like a periodic 
signal except that the period is infinity.

If we do this then it possible to state
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Where F() is called the Fourier transform of the function f(t).
Note that:

n F() replaces the discrete Fourier series coefficients Cn with a 
continuous function of angular frequency .

n The limits of the integral are now theoretically infinite; however, in 
practice the integral only has to be calculated over the time range 
where the signal f(t) is non-zero.

n As a matter of convention, time domain signals are represented using 
lower case letters whereas the frequency domain signals use capitals.

Equation (A1.9) transforms the time domain representation of the signal 
f(t) into the frequency domain representation of the signal F().

There is a complementary transform that reverses the process and converts 
the function from the frequency domain back into the time domain, which is:
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Equations A1.9 and A1.10 are known as the Fourier transform pair and can 
be used on any type of signal, whether periodic or non-periodic. Together 
they form a powerful basis for analyzing and processing signals, in particu-
lar because it is easier to consider filtering in the frequency domain rather 
than the time domain.

One way of thinking about this is to remember that the complex expo-
nential representation of a sine wave, ejwt, is a spiral as a function of time, 
as shown in Figure A1.1, and integration is merely adding up all the num-
bers within the integration range. Equation A1.5a shows that to get the dc 
content, all one has to do is add up all the signal values. So what ejwt is 
doing, as a spiral in the other direction, is to untwist the waveform at the 
frequency specified. This converts it to dc where it can be simply extracted 
by adding up all the dc values in the integration range. The inverse trans-
form re-twists the coefficient to the original frequency, amplitude and 
phase, and then all the re-twisted sine waves are added up to form the 
waveform.

A1.5  the CoNvolutioN theorem

A powerful theorem behind the Fourier transform is the convolution theo-
rem. Convolution is what filters do when they filter signals. However, we 
normally think about the action of the filter as multiplication of the spec-
trum of the signal by the filtering function. For example a low-pass filter  
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Figure A1.1  The complex exponential ejt, as a spiral as a function of time.
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gets rid of the high frequencies and passes low frequencies. This is expressed 
using the Fourier transform as the convolution theorem that states:

Convolution in the time domain is equal to multiplication in the 
transformed (frequency) domain. The converse is also true.

A1.6   A Fourier trANsForm exAmPle: the siNgle 
Pulse

Figure A1.2 shows a single rectangular pulse of length  seconds and ampli-
tude of 1/, which is defined mathematically as follows:
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Note that irrespective of the value of  the area of the pulse is constant and 
equal to one.

To find the Fourier transform of this we need to use equation A1.11 as 
f(t) in Equation A1.9. Fortunately, as this function is zero over most of the 
range and the integral of zero is zero, this results in a solvable definite inte-
gral with limits  ( ) /2  that is shown below in Equation A1.12a.
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This gives the following:
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which, after evaluating the limits becomes:
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Expanding out the complex exponentials into cos  jsin gives:
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which simplifies to:
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This can be expressed as:
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The function sin( )x x/  appears so often that it has its own name: sinc(x). 
So we can say the Fourier transform of the rectangular pulse as described in 
Equation A1.11, is:
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Note that in this case F() turns out to be real; that is, it has no imaginary 
part. This is a consequence of our defining f(t) as an even function.

If you 
remember that: 

sin( ) ( ),    1
2j

e e

and recognize that 
equation A1.12c 
can be rearranged 
to be:
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then you can 
cut straight to 
Equation A1.12e, 
instead of taking 
the “scenic route!”
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F() is plotted in Figure A1.3 for several values of . (Note that as  gets 
smaller the frequency extent of the spectrum gets much wider.) It is gener-
ally true that a waveform that changes rapidly over a narrow time extent 
results in a very wide Fourier transform. The converse is also true. In fact 
if we reduce  to zero, giving a pulse of infinite amplitude but still with an 
area equal to one, the spectrum becomes uniform for all frequencies. This 
infinitely small pulse is called a Dirac delta function and has a uniform, also 
known as a white, spectrum. The only other waveform to have a white spec-
trum is random noise.

A1.7  the DisCrete Fourier trANsForm

With digital audio signals we can calculate something called the discrete 
Fourier transform, which is given by:
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This is a mixture of the continuous Fourier transform defined in Equation 
A1.9 and the Fourier series in regard to the following:

n The continuous function of time f(t) is replaced by the discrete time 
sequence xn.

n Continuous time t is replaced by a time index (or sample number) n 
that takes values 0, 1, 2, . . . N  1.
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Figure A1.3  The spectrum of a single rectangular pulse of length .
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n The length of the signal (or of the chunk being transformed) is N 
samples and not infinite.

n The integral is replaced by a summation.

n The continuous function of frequency X() is replaced by the 
frequency sequence Xk.

n Continuous frequency f is replaced by frequency index k, which takes 
values 0, 1, 2, . . . N  1. This means that the transform values only 
exist at a finite number of discrete frequencies. This is a bit like the 
harmonics in a Fourier series except that there are a finite number  
of them.

n N discrete input time samples are transformed into N discrete 
frequency samples whose spacing is proportional to the sampling 
frequency divided by the number of samples.

There is a corresponding inverse discrete Fourier transform that takes a fre-
quency spectrum and turns it back into a time signal:
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The Fourier transform is a powerful tool for the analysis and processing of 
acoustic signals.
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To find the center frequency of the auditory filter whose critical bandwidth 
or ERB is equal to a given value, the ERB equation (Equation 2.6), which 
relates the critical bandwidth to the center frequency of the filter (fc), can be 
rearranged as follows.

Equation 2.6 states the following.

 ERB  Hz   { . [( . ) ]}24 7 4 37 1fc  (A2.1)

 

where the filter center frequency in kHz
             ERB

cf 

 the equivalent rectangular bandwidth in Hz
  equation valiid for Hz Hzc( )100 10000 f  

Rearranging step-by-step to find fc as a function of ERB:
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Appendix 2: Solving the ERB Equation
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The cent is defined as one hundredth of an equal tempered semitone, 
which is equivalent to one twelve-hundredth of an octave since there are 12 
semitones to the octave. Thus one cent can be expressed as:

 21200
1

1200 or 2











 

The frequency ratio of any interval (F1/F2) can therefore be calculated from 
that interval in cents (c) as follows:
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and the number of cents can be calculated from the frequency ratio by rear-
ranging to give:
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(A3.1)

For calculation convenience, a logarithm to base 2 can be expressed as a 
logarithm to base 10. Suppose:

 log [ ]2 x y  
(A3.2)

Then by definition:

 x y 2  

Appendix 3: Converting between Frequency 
Ratios and Cents
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Taking logarithms to base 10:

 log [ ] log [ ] log [ ]10 10 102 2x yy    

Substituting in Equation A3.2 for y:

 log [ ] log [ ] log [ ]10 2 10 2x x   

Rearranging:
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(A3.3)

Substituting Equation A3.3 into Equation A3.1:
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Evaluating the constants to give the equation for calculating the cents value 
of a frequency ratio:
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In semitones (s), this is equivalent to:
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(A3.5)

Rearranging Equation A3.4 to give the equation for calculating the fre-
quency ratio from a cent value:
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Clearly the length of time that it takes for sound to die is a function not 
only of the absorption of the surfaces in a room but also a function of the 
length of time between interactions with the surfaces of the room. We can 
use these facts to derive an equation for the reverberation time in a room. 
The first thing to determine is the average length of time that a sound wave 
will travel between interactions with the surfaces of the room. This can be 
found from the mean free path of the room which is a measure of the aver-
age distances between surfaces, assuming all possible angles of incidence 
and position. For an approximately rectangular box the mean free path is 
given by the following equation:
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(A4.1)

where the mean free path in m

the volume in m

and

MFP
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( )3
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The time between surface interactions may be simply calculated from A4.1 
by dividing it by the speed of sound to give:
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4V
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(A4.2)

where the time between reflections in s

and the speed

τ 



( )

c   of sound in ms , or meters per second( )1
 

Equation A4.2 gives us the time between surface interactions and at each 
of these interactions  is the proportion of the energy absorbed, where  
 is the average absorption coefficient discussed earlier. If  of the energy 

Appendix 4: Deriving the Reverberation  
Time Equation
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is absorbed at the surface, then (1  ) is the proportion of the energy 
reflected back to interact with further surfaces. At each surface a further 
proportion, , of energy will be removed so the proportion of the original 
sound energy that is reflected back will go as follows:
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Energy Energy  After three reflections Before reflections (11 3 α)  

(A4.3)
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As  is less than 1, (1  ) will be also. Thus Equation A4.3 shows that 
the sound energy decays away in an exponential manner. We are interested 
in the time it takes the sound to decay by a fixed proportion and so need to 
calculate the number of reflections that have occurred in a given time inter-
val. This is easily calculated by dividing the time interval by the mean time 
between reflections, calculated using Equation A4.2, to give:
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where t  the time interval (in s)
By substituting Equation A3.4 into Equation A4.3 we can get an expression 
for the remaining energy in the sound after a given time period as:
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 (A4.5)

and therefore the ratio that the sound energy has decayed by at that time as:
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In order to find the time that it takes for the sound to decay by a given ratio 
we must take logarithms, to the base (1  ), on both sides of Equation 
A4.6 to give:
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which can be rearranged to give the time required for a given ratio of sound 
energy decay as:
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(A4.7)

Unfortunately Equation A4.7 requires that we take a logarithm to the base 
(1  )! However, we can get round this by remembering that this can be 
calculated using natural logarithms as:
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So Equation A4.7 becomes:
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(A4.8)

Equation A4.8 gives a relationship between the ratio of sound energy decay 
and the time it takes, and so can be used to calculate this time. There are 
an infinite number of possible ratios that could be used. However, the most 
commonly used ratio is that which corresponds to a decrease in sound 
energy of 60 dB, or 106. When this ratio is substituted into Equation A4.8 
we get an equation for the 60 dB reverberation time, known as T60, which is:
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(A4.9)

where T60  the 60 dB reverberation time (in s)
Thus the reverberation time is given by:
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(A4.10)

where T60  the 60 dB reverberation time (in s)
Equation A4.10 is known as the “Norris–Eyring reverberation formula”  
and the negative sign in the numerator compensates for the negative sign 
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arising from the natural logarithm, resulting in a reverberation time that  
is positive. Note that it is possible to calculate the reverberation time for 
other ratios of decay, and that the only difference between these and 
Equation A4.10 would be the value of the constant. The argument behind 
the derivation of reverberation time is a statistical one and so there are some 
important assumptions behind Equation A4.10. These assumptions are:

n that the sound visits all surfaces with equal probability, and at all 
possible angles of incidence; that is, the sound field is diffuse. This 
is required in order to invoke the concept of an average absorption 
coefficient for the room. Note that this is a desirable acoustic goal for 
subjective reasons as well; we prefer to listen to, and perform, music 
in rooms with a diffuse field.

n that the concept of a mean free path is valid. Again, this is required 
in order to have an average absorption coefficient but in addition it 
means that the room’s shape must not be too extreme. This means 
that this analysis is not valid for rooms which resemble long tunnels; 
however, most real rooms are not too deviant and the mean free path 
equation is applicable.
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In real rooms we must also allow for the presence of a variety of different mate-
rials, as well as accounting for their variation of absorption as a function of 
frequency. This is complicated by the fact that there will be different areas of 
material, with different absorption coefficients, and these will have to be com-
bined in a way that accurately reflects their relative contribution. For example, 
a large area of a material with a low value of absorption coefficient may well 
have more influence than a small area of material with more absorption.

In the Sabine equation this is easily done by multiplying the absorption 
coefficient of the material by its total area and then adding up the contri-
butions from all the surfaces in the room. This resulted in a figure which 
Sabine called the equivalent open window area as he assumed, and experi-
mentally verified, that the absorption coefficient of an open window was 
equal to one. It is therefore easy to incorporate the effects of different mate-
rials by simply substituting the total open window area for different materi-
als, calculated using the method described above for the open window area.  
This gives a modified equation which allows for a variety of frequency-
dependent materials in the room:
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where ( ) the absorption coefficient for a given materiaiα f  ll
and its areaiS   

Appendix 5: Deriving the Reverberation  
Time Equation for Different Frequencies  
and Surfaces
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For the Norris–Eyring reverberation time equation the situation is a little more 
complicated because the equation does not use the open window area directly. 
There are two possible approaches. The first is to calculate a weighted average 
absorption coefficient by calculating the effective open window area, as done 
in the Sabine equation, and then dividing the result by the total surface area. 
This gives the following equation for the average absorption coefficient:
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which can be substituted for  in the Norris–Eyring reverberation time 
equation to give a modified equation, which allows for different materials 
in the room:
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(A5.2)

Equation A5.2 can be used to calculate the effect of a variety of frequency-
dependent materials in the room. However, there is an alternative way of 
looking at the problem which is more in the spirit of the reasoning behind 
the Norris–Eyring reverberation time equation. This second approach can 
be derived by considering the effect on the sound energy amplitude of suc-
cessive reflections which hit surfaces of differing absorption coefficients. In 
this case the proportion of the original sound energy that is reflected back 
will vary with each reflection as follows:
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This can be couched in terms of an average  by taking the geometric mean 
of the different reflection coefficients (1  ). For example, after two reflec-
tions the energy is at a level which would be the same as if there had been 
two reflections from a material whose reflected energy was given by:

 
(1 1 11 2   α α α) ( )( )average  



Appendix 5: Deriving the Reverberation Time Equation for Different Frequencies 457
After three reflections the average reflection coefficient would be given by:

 
(1 1 1 11 2 3

3    α α α α) ( )( )( )average  

And after n reflections the average reflection coefficient would be given by:

 
(1 1 1 1 1       α α α α α) ( )( )( ) ... ( )average 1 2 3 n

n
 

Because there are only a finite number of different materials in the room, 
but of differing areas, it is necessary only to consider an average based on 
just the number of different materials but weighted to allow for their dif-
fering surface areas. Because logarithms convert products to additions, this 
weighted geometric mean can be simply expressed as a sum of the indi-
vidual absorption terms and so the Norris–Eyring reverberation time equa-
tion can be rewritten in a modified form, which allows for the variation in 
material absorption due to both nature and frequency, as:
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(A5.3)

Equation A5.3 is also known as the “Millington–Sette equation.” Although 
Equation A5.3 can be used irrespective of the absorption level it is still 
more complicated than the Sabine equation, and if the absorption coeffi-
cient is less than 0.3 it can be approximated very effectively by it, as dis-
cussed previously. Thus in many contexts the Sabine equation, Equation 
A5.1, is preferred.
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In order to understand how the properties of sequences, or the size of a 
loudspeaker, affect polar performance we must first look at some theory 
behind array polar patterns.

A6.1  An ArrAy of point sources

Consider an evenly spaced, linear array of perfect point source radiators, as 
shown in Figure A6.1, with complex amplitudes A0. . . AN1. This corre-
sponds to the radiated sound from an array of speakers, and the amplitudes 
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represent the illumination of the surface. If we are an infinite, or at least 
very large, distance away, we can make the following approximations:

 1.  The wavefronts are planar and therefore all the radiators will have 
the same angle of incidence () to the far off point.

 2.  The differences in path lengths are so small that only the initial 
phase difference, due to  affects the received amplitude.

These approximations are known as the far-field assumptions and, in the-
ory, will be satisfied provided one is a reasonable distance from the array.

Assuming, for the moment, that the far-field assumptions are satisfied, 
we can say the following about our linear array of ideal point sources:

 1.  The far-field response will be given by the sum of the individual 
point sources with an additional phase delay/advance due to due to 
, which is the angle from the normal, as shown in Figure A6.1.

 2.  The phase delay due to  will be given by:

 Phase delay nd  sin   (A6.1)

where n is proportional to the point source number, as shown in  
Figure A6.1.

For the example shown in Figure A6.1, this results in an equation for the 
far-field polar response, at a frequency whose wavenumber is k, which is:
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where the wave number k is given by:
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This can be rewritten as:
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If we make     kd sin then Equation 
A6.4 can be rewritten as:
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figure A6.1  A linear array of n point sources.
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Equation A6.5 is in fact a discrete Fourier transform (DFT) in which     
kd sin. This means that the far-field polar pattern of an array of point 
sources is related to the illumination of the surface by a Fourier transform 
relationship. Therefore all the theorems that apply to the Fourier transform 
apply to an array of point sources. In particular, these are:

 1.  Linearity and superposition: Weighted addition in the spatial domain 
is equivalent to addition in the transformed polar pattern domain.

 2.  The convolution theorem: This theorem states that convolution in 
the spatial domain is equivalent to multiplication in the transformed 
polar pattern domain. The converse is also true.

 3.  The Wiener–Khinchin theorem: The Wiener–Khinchin theorem 
states that the squared Fourier transform magnitude of a sequence, 
in the spatial domain (that is, its polar pattern) is equal to the 
Fourier transform of its autocovariance (or autocorrelation function).

 4.  The shift theorem: A shift in the spatial domain leads to a linear 
(progressive) phase change in the transformed polar pattern domain 
and vice versa.

As we shall see later these have some important consequences.

A6.1.1  the visible region
Although, in theory, the variable in Equation A6.5 can range from  to 
, in reality it cannot. In fact, because sin cannot exceed 1, there is 
only a limited range that makes any physical sense. This region is known 
as the “visible region” and, because     kd sin, the visible region cor-
responds to kd           kd. The visible region corresponds to the 
angles between 90° of the normal direction.

This is shown in Figure A6.2 for a 10-element array of points, with  
the elements spaced 4.3 cm apart, at 1 khz (kd  0.79). If we double the 
frequency to 2 kHz then kd doubles (kd  1.58) and the visible region also 
doubles, as shown in Figure A6.3.

As the visible region corresponds to the angles between 90° of the nor-
mal direction, the effect of doubling the visible region also implies a nar-
rowing of the main lobe—if its shape does not change as the visible region 
increases, as in our examples.

A6.1.2  the effect of sampling
When the frequency gets high enough so that the spacing between the  
point sources becomes greater than half a wavelength, the array becomes 
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under-sampled. Under these conditions one gets spatial aliasing, which 
results in multiple main lobes. Figures A6.4, A6.5 and A6.6 illustrate this. 
Figure A6.4 shows the 1 kHz example with the scale expanded. The first 
thing to note is that the visible region still covers the same region as that 
of Figure A6.2. The second thing to note is that the expanded scale reveals 
the multiple peaks that indicate the possibility of spatial aliasing.

Figure A6.5 shows the visible region when the frequency equals 7 kHz 
(kd  5.5). Here we can see that although the aliased main lobe is not 
visible, there is an increase in side-lobe levels due to the spatial aliasing. 
Figure A6.6 shows the visible region when the frequency equals 10 kHz 
(kd  7.85). Here we can see that the aliased main lobe is now visible, and 
there is a large increase in the side-lobe levels due to the spatial aliasing.
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The visible region of an 
array of points in a larger  
space (kd  0.79).
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figure A6.5
The visible region of an 
array of points in a larger  
space (kd  5.5).
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A6.1.3  the effect of a progressive phase shift
From the shift theorem, we know that a shift in the spatial domain leads 
to a linear (progressive) phase change in the Fourier domain and vice versa. 
Thus, a progressive phase shift in the spatial domain would result in a lin-
ear shift of the function in  space. This would result in the main lobe 
moving to an angle off the central axis: beam steering. However, the visible 
region would remain in the same place.

A6.2  AppLicAtion to Diffuser Design

For a diffuser, we wish to have a P(k) that is uniform with respect to angle. 
Which, in turn, corresponds to a pattern of coefficients. This corresponds 
to a diffuser structure that has a constant Fourier transform magnitude over 
the visible region. The effect of an obliquely incident wavefront is to add an 
additional progressive phase shift across the diffuser’s re-radiated sound. 
This causes the visible region to be shifted in angle. Therefore, in addition, 
we would like the Fourier transform magnitude to be uniform outside the 
visible region as well to cover oblique incidence; and so we need to find 
diffusion structures that have uniform magnitude Fourier transforms, such 
as Schroeder (Schroeder, 1975) diffusers. We can use the Fourier transform 
relationship between the far-field polar pattern and the pattern of ampli-
tudes at the diffuser’s surface to help us choose appropriate sequences for 
diffusion structures.

The Wiener–Khinchin theorem states that the squared Fourier trans-
form magnitude of a sequence is equal to the Fourier transform of its 
autocovariance (or autocorrelation function). Therefore sequences whose 
autocovariance is either a delta function, or close to a delta function, willis either a delta function, or close to a delta function, willeither a delta function, or close to a delta function, will 
form good diffusers, because the Fourier transform magnitude of a delta 
function is uniform.

The convolution theorem states that convolution in the spatial domain is 
equivalent to multiplication in the Fourier domain and that the converse is 
true. This means that multiplication, or modulation, in the spatial domain 
corresponds to convolution in the polar pattern domain. This allows us to 
use a variety of modulation techniques on short diffusers to achieve good dif-
fusers (Angus and McManmon, 1998; Angus, 2000; Cox and D’Antonio, 
2009) without the lobe narrowing that results from a repeated set of short 
diffusers. In fact, the Fourier relationship allows one to develop new diffusion 
structures, such as “Binary Amplitude” (Angus, 2000; Cox and D’Antonio, 
2009) and “Ternary” (Cox et al., 2005) diffusers.
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A6.3  AppLicAtion to ArrAy LouDspeAkers

An early example of an array loudspeaker was the column loudspeaker. 
In this arrangement a number of small loudspeakers were arranged in a 
closely spaced line. Because of the extended length of the source in one 
plane, directivity control was achieved in that plane. However, the beam 
pattern would get progressively more directive with frequency, as predicted 
by the Fourier transform. Techniques were developed to reduce this behav-
ior, usually by applying the necessary frequency-dependent weighting, 
tapering, or windowing using simple electrical circuits—a direct application 
of the convolution theorem. Methods of steering these line speakers were 
also developed, either by using simple analog delay techniques or by using 
the inherent phase shifts in the filters used to taper the array. Again, this is 
a direct application of the shift theorems of the Fourier transform.

Array loudspeakers can also exhibit unwanted side lobes at higher fre-
quencies, due to aliasing, which reduce their utility; that is, above some 
frequencies the spacing between the drivers is greater than half the wave-
length of the sound being produced. This results in spatial aliasing and in a 
loss of control of the beam pattern.

To avoid spatial aliasing requires a huge number of small loudspeakers, 
which results in a prohibitive cost for the array. For example, ideally we 
want pattern control over the entire audio frequency range. However, even 
if we make the speaker spacing 4.3 cm, which is unfeasibly small because 
we would need a large number to achieve low-frequency pattern control, we 
still have significant aliasing at 10 kHz.

A6.3.1  Acoustic spatial filtering
One way of reducing the effect of spatial aliasing is to use directive loud-
speakers, instead of point sources, as the array elements. If one uses direc-
tive sources then their polar patterns will act as a form of spatial filter; that 
is, the off-axis side lobes will be reduced by the axis reduction in sound 
level that a directive source affords. Figure A6.7 shows an array response at 
10 kHz (kd  7.85) with the response of a continuous line source (of length 
equal to the element spacing) superimposed upon it. Of particular note is 
that the zeros of the continuous line source fall on the aliased main lobes 
from the point source array. Because the far-field polar pattern of an array 
of point sources is related to the applied signals by a Fourier transform rela-
tionship, all the theorems that apply to the discrete Fourier transform apply 
to the array loudspeaker. This means that the theorem that convolution in 
one domain is equal to multiplication in the other domain applies to this 
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situation. Replacing each of the point sources with a continuous line source 
is equivalent to convolving it with the point array. Therefore, the effect of 
replacing the point source with the continuous sources is to multiply their 
far-field patterns together.

This pattern multiplication is well known and the effect for our exam-
ple is shown in Figure A6.8. One can see that the aliased main lobes have 
been eliminated. In fact, the response has become equivalent to a continu-
ous line source of the same extent as the array. Clearly, using directional 
sources such as constant directivity horns can also be used to achieve simi-
lar effects. It is this that results in the success of large arrays based on con-
stant directivity horns, providing the horns have directivity control before 
spatial aliasing occurs. Once the directivity of the individual elements is 
considered, the need for curved arrays also becomes apparent as the spatial 
filtering effect of the sources must also be factored in.
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An array speaker and a 
continuous source equal to 
the spacing (kd  7.85).
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continuous sources equal 
to the spacing (kd  7.85).
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A6.4  AppLicAtion to constAnt Directivity Horns

Keele (2000, 2002, 2003a & b) extended the work of Van Buren (Rogers and 
Van Buren, 1978; Van Buren et al., 1983) to develop the constant beam-
width theory (CBT) arrays. In his papers, the transducer is a circular spher-
ical cap of arbitrary half-angle with Legendre function shading. It provides a 
constant beam pattern and directivity with extremely low side lobes for all 
frequencies above a certain cut-off frequency.

To maintain constant beamwidth behavior, CBT circular-arc loud-
speaker line arrays require that the individual transducer drive levels be set 
according to a continuous Legendre shading function. This shading gradu-
ally tapers the drive levels from maximum at the center of the array to zero 
at the outside edges of the array. Keele developed approximations to the 
Legendre shading that both discretise the levels and truncate the extent of 
the shading so that practical CBT arrays can be implemented. He deter-
mined by simulation that a 3 dB stepped approximation to the shading 
maintained out to 12 dB did not significantly alter the excellent pattern 
control of a CBT line array.

Conventional CBT arrays require a driver configuration that conforms 
to either a spherical-cap curved surface or a circular arc. Keele also showed 
how CBT arrays can be implemented in flat-panel or straight-line array 
configurations using signal delays and Legendre function shading of the 
driver amplitudes. CBT arrays do not require any signal processing except 
for simple frequency-independent shifts in loudspeaker level. This is in 
contrast with conventional constant-beamwidth flat-panel and straight-line 
designs, which require strongly frequency-dependent signal processing.

These results are important because they also provide a link between 
array loudspeakers and constant directivity horns. Figure A6.9, reproduced 
from Keele (2002), shows how the delays for a planar CBT array effectively 
move the driver from its position on a flat surface to a point on a circular 
arc; that is, it provides a delay that makes a wavefront at the planar array 
that is spherical. According to the Fourier theory described earlier, the Fourier 
transform of the combination of phase shifts—due to a spherical wavefront 
and Legendre weighting—results in a frequency-independent constant beam-
width above a certain cut-off frequency. Furthermore, the cut-off frequency is 
a function of both the required directivity angle and the length of the array.

If we compare this to a constant directivity horn we observe many 
similarities:

 1.  Firstly, the conical flare of such horns results in a spherical 
wavefront at the horn’s mouth.
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2.  Secondly, the projection of the spherical 
wavefront’s intensity onto the planar front 
of the horn results in an intensity that has 
a cosine roll-off from the center of the horn. 
This approximates a Legendre weighting at the 
center of the planar front of the horn, as shown 
in Figure A6.10. Unfortunately, the weighting 
is not enough at the edges of the horn aperture. 
However, practical constant directivity horns 
have an additional, more extreme flare at 
the mouth. This would have the effect of 
more rapidly reducing the amplitude at the 
edge of the horn’s mouth; thus more closely 
approaching Legendre weighting.

Thus, constant directivity horns can be seen as a 
simple approximation to a CBT array!

A6.5   tHe effect of MoutH, or 
ArrAy, size on BeAMwiDtH

How does the size of the horn mouth, or the 
array size, affect the lowest frequency for a given 
beamwidth?

The normalized polar pattern for a linear array of N equally driven point 
sources is given by:
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and its 6 dB angle occurs when:
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figure  A6.9  Relationships required to calculate the 
delays for a planar CBT array (from Keele, 2002).
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This can be rewritten as:
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which, if we combine all the constants, becomes:
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Equation A6.10 shows that the 6 dB angle depends on the ratio of the 
wavelength, and the number of sources times the distance between them. 
The number of sources times the spacing between them is simply the 
length of the array “L.” So equation A6.10 becomes:
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as a function of frequency.
Because of the convolution theorem discussed earlier, this equation 

applies to continuous sources, e.g., horn mouths, as well as speaker arrays. 
This means that the directivity of a uniformly driven speaker array, or a 
uniformly illuminated horn mouth, is a function of the number of wave-
lengths that fit into the size “L.”

For example, if exactly one wavelength fits across the speaker length, then 
the 6 dB angle will be 40°, a beamwidth of 80°, and for two wavelengths  
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figure A6.10  Legendre versus cosine weighting.
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the beamwidth will be 37°, and so on, the beamwidth, approximately halv-
ing for every doubling of frequency. On the other hand if the wavelength to 
length ratio is ( / ) ( / . ) .λ L  1 0 64 1 57  then the speaker has no directivity 
at all – it becomes omnidirectional!

A6.5.1  the minimum beamwidth frequency as a function of size
It is sometimes useful to be able to calculate the minimum frequency that 
a speaker of a given size can achieve at a particular coverage angle. We can 
do this by rearranging Equation A6.7:
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which, if we combine all the constants becomes:
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Equation A6.13 gives a simple relationship between the size of a speaker 
array, or a constant directivity horn mouth, and the minimum frequency 
that sustains the desired beamwidth.

This appendix has presented the basic Fourier relationship between the 
far-field polar response and the near-field illumination of the aperture. It 
has demonstrated its utility in a variety of electroacoustic applications. In 
particular it is possible to derive some useful relationships between the size 
of the speaker, with respect to wavelength, and its directivity performance 
versus frequency. In the case of directivity, size really does matter!

references

Angus, J.A.S., McManmon, C.I., 1998. Orthogonal sequence modulated phase 
reflection gratings for wide-band diffusion. Journal of the Audio Engineering 
Society. 46 (12), 1109–1118. 

Angus, J.A.S., 2000. Using grating modulation to achieve wideband large area  
diffusers. Applied Acoustics. 60 (2), 143–165. 

Cox, T.J., D’Antonio, P., 2009. Acoustic Absorbers and Diffusers: Theory, Design 
and Application. Spon Press. 

Cox, T.J., Angus, J.A.S., D’Antonio, P., 2005. Ternary sequence diffusers. Forum 
Acusticum, Budapest paper 501.0. 



471References
Keele  D.B. Jr., 2000. The application of broadband constant beamwidth transducerD.B. Jr., 2000. The application of broadband constant beamwidth transducerJr., 2000. The application of broadband constant beamwidth transducer 
(CBT) theory to loudspeaker arrays. 109th Conv. Audio Eng. Soc. Preprint, 5216 
(Sept.). 

Keele, D.B. Jr., 2002. Implementation of straight-line and flat-panel constant beam-
width transducer (CBT) loudspeaker arrays using signal delays. Presented at the 
113th Conv. Audio Eng. Soc., Oct., Preprint 5653.

Keele, D.B. Jr. 2003. Practical implementation of constant beamwidth transducer 
(CBT) loudspeaker circular-Arc Line Arrays. Presented at the 115th Conv. Audio 
Eng. Soc., Oct., Preprint 5863.

Rogers, P.H., Van Buren, A.L., July 1978. New approach to a constant beamwidth 
transducer. Journal of the Acoustical Society of America. 64 (1), 38–43. 

Schroeder, M.R., 1975. Diffuse sound reflection by maximum-length sequences. 
Journal of the Acoustical Society of America. 57 (1), 149–150.. 57 (1), 149–150. 

Van Buren, A.L., Luker, L.D., Jevnager, M.D., Tims, A.C., June 1983. Experimental 
constant beamwidth transducer. Journal of the Acoustical Society of America.. 
73 (6), 2200–2209. 

furtHer reADing

Angus, J.A.S. and D’Antonio, P. 1999. Two-Dimensional Binary Amplitude Diffus-
ers. 107th Convention of the Audio Engineering Society, Preprint 5061.

Keele D.B. Jr., July/August 2003a. The full-sphere sound field of constant 
beamwidth transducer (CBT) loudspeaker line arrays. Journal of the Audio 
Engineering Society 51 (7/8), 611–624. 

Trevelyan, J., 1994. Boundary Elements for Engineers: Theory and Applications. 
Computational Mechanics Publications, Southampton. 



473

Acoustics and Psychoacoustics
Copyright © 2009 Elsevier Ltd. All rights of reproduction in any form reserved.2009

The compact disc (CD) which accompanies this book contains a number 
of audio examples that are provided for listening and experimentation in 
relation to discussions provided in the text, to support learning and further 
understanding. The purchase of this book and the audio CD grants the 
owner the right to use the audio material provided solely for this purpose. 
Copyright © in these recordings belongs to David M. Howard. Any use of 
this copyright material for commercial gain is not permitted unless prior 
agreement has been gained from the copyright © holder.

The Acoustics and Psychoacoustics CD is 
© David M. Howard, York, 2009

The tracks on the CD are listed below along with a brief description and an 
indication of the section in the text that is supported by the audio material. 
Some tracks are provided in support of psychoacoustic aspects of the text, 
and these should be listened to at a comfortable volume level, using only 
headphones where indicated. Other tracks provide anechoic recordings of 
acoustic musical instruments as source material to allow readers to carry 
out their own analyses. For example, these sounds can be analyzed in terms 
of their waveforms and spectra to enable comparisons to be made with fig-
ures provided in the text such as Figures 4.11, 4.17, 4.22, 4.29, and 5.1–5.5.  
A number of freeware programs are available for this purpose which can 
readily be found via Internet search engines.

The acoustic recordings were made in the acoustic anechoic room at the 
Department of Electronics, University of York, UK. A Sennheiser MKH20 
omnidirectional microphone, an RME quad microphone amplifier and an 
Edirol R4 hard disk recorder (44 kHz sampling rate, 24-bit resolution) were 
used to make the master recordings. Please note that no attempt has been 
made to remove extraneous sounds in the live anechoic recordings, such 
as breath noises, instrument key clicks and page rustling; these recordings 
are presented “in the raw” as source material intended for use as learning 

Appendix 7: Track Listing for  
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exercises. One such exercise for readers might involve practicing removing 
these extraneous sounds.

The track number is given as “No.” and the “Section” entry indicates 
where in the text the track is most relevant. If the track links specifically to an 
aspect of the text, such as a figure, this is indicated under “Track contents.”

Table A7  ��������� ���� ��������������� ������ ������� ����� ������ ������������������ ���� ��������������� ������ ������� ����� ������ ���������

no. Track contents Section

1 Critical bands by sine waves: Tw� ���e w�ve� ��e �e����—��e �� � �������� f�eq�e��� (F1) �f 440 Hz 
���� ��e �e����� ���������� �� 440 Hz, ��v����� �� ������� 660 Hz ���� b���� �� 440 Hz. T�e �������e� 
��e����be�� �� Se����� 2.2 ���� ���������e�� �� F������e 2.6 ������� be �����b�e.

2.2

2 Average hearing change with age: T�e fi��� few �e����� �f ��e ������e ��e����e ��e�� �� T����� 73 ��� 
bee� fi��e�e�� �� ����w ��e �ve�����e effe�� �f ���������, �� ��e�b������, �� be ���������e�� ������������ f�� �e� 
���� w��e� ����e�� (�� �e���) 20 (�� ���ffe�e��e), 60 ���� 80 b��e�� �� ��e ����� �����e�� �� F������e 2.11. 
T����� ��� five �����e��: (1) ���e �� fe���e ����e�� 20; (2) fe���e ����e�� 40; (3) ���e ����e�� 40; (4) fe���e 
����e�� 60; (5) ���e ����e�� 60.

2.3

3 Loudness doubling: � ����b������ �� ������e�� �eq���e�, �� �ve�����e, � 10 ��B ����e��e �� ������ ��e����e 
�eve� �� ��������e�� �� Ex����e 2.4. T��� ex����e ��e� �� ��e����� �e���������� �e� �� ��e f����w����� �eve��: 
0 ��B, 3 ��B, 6 ��B ���� 10 ��B �� ���������e ��e effe�� �f ����b������ ���e����� (3 ��B), ����b������ ��e����e 
(6 ��B) ���� �ve�����e ����b������ �� ������e�� (10 ��B).

2.4

4 Pitch demo: T��ee ����� ��e������������ ��e ��e�e��e��: (�) ��e fi��� five ��������� w��� � f������e���� 
�f 200 Hz; (B) �� (�) b�� w������ ��e f������e���� (��e “��������� f������e����”); (C) � ������ ������������ 
�f ������e��� �� 1800 Hz, 2000 Hz ���� 2200 Hz f�� w���� ��e �e��e�ve�� ����� �� ������� 200 Hz.(D) 
� ������ ������������ �f ������e��� �� 1840 Hz, 2040 Hz ���� 2240 Hz f�� w���� ��e �e��e�ve�� ����� �� 
������� �e����e�� �� 207 Hz b�� w��� ��b��������. F�� ex���������� �f (C) ���� (D), �ee ����e��� ��  
Se����� 3.2.1, S�����e� (1940) ���� M���e (1982) — �efe�e��e� ����e�� �� ��e e��� �f C����e� 3.

3.2.1, 
3.2.2 & 
3.2.3

5 Prime partials: S����e��ze�� ������� w���e f�eq�e��� ������e��� ��e �e� �� ����e ���be�� (557 Hz, 
1381 Hz, 1663 Hz, 1993 Hz ���� 2371 Hz); ���� ��e� ��e ��� ��������� �f � ������ f������e����.

3.2.2 & 
5.3.1

6 Residue pitch: �� ���e�������� ���� � ������������ ��e ����e�� ������� ����e �����e�� �� � ��e���e�� ve����� �f ���e�f 
�� ��e����be�� �� ��e fi��� ����������� �f Se����� 3.2.6.

3.2.6

7 Tuning systems: � ������ �eq�e��e (�����—I, ��b-���������—IV, ���������—V, �����—I) �� ����e�� �� j��� 
�e��e���e�� (����e�� �� ��e ��e� �f C) �� ��� 12 ��e�� ���������� ���� e�������� �� C ��j��. N����e ��e ���ffe�e��e 
be�wee� ��e ��������� �������� �� C ��j�� ���� ��e ����e� ���e ���������� �������� �� ��e�� ���� �� F# ���� 
B ��j��.

3.4

8 Half-size violin arpeggio: G ��j�� ���e�������� (G3 �� G5) �� � ���f-��ze v�����. 4.2

9 Half-size violin music: B��ef ����� �����e� �� ���f-��ze v�����. 4.2

10 Violin arpeggio: G ��j�� ���e�������� (G3 �� G7) �� � v�����. 4.2

11 Flute arpeggio: G ��j�� ���e�������� (D4 �� B6) �� � fl��e. 4.3.3

12 Flute music: B��ef ����� �����e� �� � fl��e. 4.3.3

13 Piccolo arpeggio: G ��j�� ���e�������� (D5–B7) �� � �������. 4.3.3

14 Piccolo music: B��ef ����� �����e� �� � �������. 4.3.3

15 Bass recorder arpeggio: G ��j�� ���e�������� ���� ex��e�e (F2, G2 �� G4) �� � b��� �e�����e�. 4.3.3

16 Bass recorder music: B��ef ����� �����e� �� � b��� �e�����e�. 4.3.3

(Continued)
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17 Tenor recorder arpeggio: G ��j�� ���e�������� ���� ex��e�e� (C3, D3 �� B4, C5) �� � �e��� �e�����e�. 4.3.3

18 Tenor recorder music: B��ef ����� �����e� �� � �e��� �e�����e�. 4.3.3

19 Treble recorder arpeggio: G ��j�� ���e�������� ���� ex��e�e (F3, G3 �� G5) �� � ��eb�e �e�����e�. 4.3.3

20 Treble recorder music: B��ef ����� �����e� �� � ��eb�e �e�����e�. 4.3.3

21 Descant recorder arpeggio: G ��j�� ���e�������� ���� ex��e�e� (C4, D4 �� B5, C6) �� � ��e����� �e�����e�. 4.3.3

22 Descant recorder music: B��ef ����� �����e� �� � ��e����� �e�����e�. 4.3.3

23 Sopranino recorder arpeggio: G ��j�� ���e�������� ���� ex��e�e (F4, G4 �� D6) �� � ��������� �e�����e�. 4.3.3

24 Sopranino recorder music: B��ef ����� �����e� �� � ��������� �e�����e�. 4.3.3

25 Swanee whistle: F��� ���� ���w �wee�� �� � �w��ee w�����e. 4.3.3

26 Bassoon arpeggio: G ��j�� ���e�������� ���� ex��e�e (Bb1, B1 �� B4) �� � b������. 4.3.6

27 Bassoon music: B��ef ����� �����e� �� � b������. 4.3.6

28 Oboe arpeggio: G ��j�� ���e�������� (B3 �� D6) �� �� �b�e. 4.3.6

29 Oboe music: B��ef ����� �����e� �� �� �b�e. 4.3.6

30 Bagpipe steady chord: D���e ���� ��e���� ���e �� b�������e�. 4.3.6

31 Bagpipe music: B��ef ����� �����e� �� b�������e�. 4.3.6

32 Bass clarinet arpeggio: G ��j�� ���e�������� (D2 �� G4) �� � b��� ������e�. 4.3.6

33 Bass clarinet music: B��ef ����� �����e� �� � b��� ������e�. 4.3.6

34 Clarinet arpeggio: G ��j�� ���e�������� (D3 �� G5) �� � ������e�. 4.3.6

35 Clarinet music: B��ef ����� �����e� �� � ������e�. 4.3.6

36 Tuba arpeggio: G ��j�� ���e�������� (G1 �� G3) �� � ��b�. 4.3.7

37 Tuba music: B��ef ����� �����e� �� � ��b�. 4.3.7

38 Bird call: cuckoo (3 times). 4.3.3

39 Bird all: ������ (8 ���e�). 4.3.6

40 Bird call: ������e (7 ���e�). 4.3.6

41 Bird call: ��������������e (5 ���e�). 4.3.3

42 Bird call: q���� (8 ���e�). 4.3.3

43 Adult female speech: Re��� ��������e (b��� �����e��: ���������e). 4.5

44 Adult female speech: Re��� ��������e (�������: ���������e; �ef�: e�e��������������������*). 4.5

45 Adult female arpeggio: G ��j�� ���e�������� f��� B3 �� B5 (b��� �����e��: ���������e). 4.5

46 Adult female arpeggio: G ��j�� ���e�������� f��� B3 �� B5 (�������: ���������e; �ef�: e�e��������������������*). 4.5

47 Adult female singing: S����� �����e� (b��� �����e��: ���������e). 4.5

48 Adult female singing: S����� �����e� (�������: ���������e; �ef�: e�e��������������������*). 4.5

49 Adult male speech: Re��� ��������e (b��� �����e��: ���������e). 4.5

50 Adult male speech: Re��� ��������e (�������: ���������e; �ef�: e�e��������������������*). 4.5

51 Adult male arpeggio: G ��j�� ���e�������� f��� G2 �� B4 (b��� �����e��: ���������e). 4.5

(Continued)
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52 Adult male arpeggio: G ��j�� ���e�������� f��� G2 �� B4 (�������: ���������e; �ef�: e�e��������������������*). 4.5

53 Adult male singing: F���-���� �����-������e�� ���e v���e b��be����� (TTBB) �����e� (��e�e������� 
��e�e������� �f ���������e �������).

4.5

54 Adult male singing: F���-���� �����-������e�� ���e v���e b��be����� (TTBB) �����e� (��e�e������� 
��e�e������� �f e�e�������������������� �������).

4.5

55 Adult male singing: F���-���� �����-������e�� ���e v���e b��be����� (TTBB) �����e� (��e�e������� 
��e�e������� �f ��e ���e� ���� f��� ��e 1�� �e��� ���� ���������e�� b� ��e e�e�������������������� ������� �f 
��e ���ee ���e� �����).

4.5

56 Girl (9years old) singing: H��� �����e� (b��� �����e��: ���������e). 4.5

57 Girl (9years old) singing: H��� �����e� (�������: ���������e; �ef�: e�e��������������������*). 4.5

58 Boy (12years old) speech: Re��� ��������e (b��� �����e��: ���������e). 4.5

59 Boy (12years old) speech: Re��� ��������e (�������: ���������e; �ef�: e�e��������������������*). 4.5

60 Boy (12years old) singing: H��� �����e� (b��� �����e��: ���������e). 4.5

61 Boy (12years old) singing: H��� �����e� (�������: ���������e; �ef�: e�e��������������������*). 4.5

62 Timbre demonstration material: F��� ���e� ��e ���v���e��—��e e��� f��� � v�����, fl��e, b������ ���� 
�b�e. T�e ���e� ��ve bee� ����� ���f�e�� �� G4, ���������e ����e�� �� ��e ����� ���� fi����, ���� ��e ��e����-
����e �������� ��e eq����ze�� �� �eve�. ��� ���ffe�e��e ���� �� �e���� be�wee� ��� �f ��e�e ������� �e����� 
f��� � �������e �� ���b�e, ����e ��e�� �����, ������e�� ���� ���������� ��e ��e ���e (�ee ��e ��efi������ �f 
���b�e ����ve� �� Se����� 5.1).

5.1

63 Helmholtz timbre rules: � �e��e� �f ������� �� ���������e e��� �f ��e f��� ���b�e “���e�” ��e����be�� �� 
Se����� 5.3.2: (�) ���e w�ve �� 200 Hz (���e 1—�����e ���e�); (B) ��������� �� 200, 400, 600, 800, 
���� 1000 Hz (���e 2—������� ���e�); (C) ��������� �� 200, 600, 1000, 1400, 1800, 2200, 2400, 
2600, 3000, 3400 ���� 3800 Hz (���e 3—��eve� ��������); (D) ��������� 1 �� 20 �� 200 (���e 4—
��������� �������� �b�ve ��e ��x�� �� �eve���).

5.3.2

64 Organ stops reinforcing all harmonics: T�e ����� ���� �e��f���e ��e fi��� ���e ��������� (1f0, 2f0, 3f0, 
4f0, 5f0, 6f0, 7f0, 8f0, 9f0) ��e ����w� ��e �f�e� ��e ���e� w����� ��e ���e G4(392Hz) �� �e���. T�e ����� �� 
���� �������e�� ��e: �����e� fl��e 8’, ��e� fl��e 4’, ��z���� 2 2/3’, b����� fl��e 2’, ��e��e 1 3/5, ��������� 1 1/3, 
�e���è�e 1 1/7’, ����v�� 1’ ���� ���e 8/9’. T��� e��b�e� ��e effe�� �f e��� ���� �� be �e���� �� �� ������b��e� 
�� ��e ���b�e �f ��e ������: � f��� �f “��������” ����e������. T�e� ��e ���e �� �e�e��e�� � few ���e� ���� �� 
���e�������� �� ����e��, ���� ��w ��e ���e� ��e ������� �e���� �� � w���e: � f��� �f “��������” ����e������.

5.4

65 Organ stops reinforcing odd harmonics: T�e ����� ���� �e��f���e ��e fi��� five ����� ��������� (1f0, 3f0, 
5f0, 7f0, 9f0) ��e ����w� w���e ��e ���e G4(392Hz) �� �e���. T�e ����� �� ���� �������e�� ��e: �����e� 
fl��e 8’, ��z���� 2 2/3’, ��e��e 1 3/5, �e���è�e 1 1/7’ ���� ���e 8/9’. T��� e��b�e� ��e effe�� �f e��� ���� 
�� be �e���� �� �� ������b��e� �� ��e ���b�e �f ��e ������: � f��� �f “��������” ����e������. T�e� ��e ���e �� 
�e�e��e�� � few ���e� ���� � ����� ���e �� ����e��; ��w ��e ���b�e �f ��e ���e� �� ������� �e���� �� � w���e: 
� f��� �f “��������” ����e������. N����e ���� ��e fi��� effe�� �� ���ew��� ������e�-����e ���e �� ��e ��e����� 
������������ �f ��e ����� �������� �e��e� (�ee Se����� 4.3.6 w���� ��������e� ��e ��������� �f ��e ������e�).

5.4

66 Frequency proximity streaming: T�e ����e �����e� f��� ��e P�e������ f��� P������ III �� E ��j�� b� J.S. 
B��� ���w� �� F������e 5.13 �� �����e��ze�� �� e��b�e ��e ���e������� effe�� �� be �e����.

5.5.3

67 Grouping and frequency proximity streaming: T�e ����e �����e� f��� ��e fi��� ��ve�e�� �f 
T�������v����’� ��x�� �������� ���w� �� F������e 5.14 �� �����e��ze�� �� e��b�e ��e ���e������� effe�� �� be 
�e���� �� f����w�: (�) f��� ����e����; (B) 1�� v������ ���� v�����; (C) 2��� v������ ���� �e����.

5.5.3

(Continued)
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68 Shepherd tone illusion: � ��e����������� �f ��e S�e��e��� ���e �������� w���� �� b��e�� �� ��e ��e���� 
���w� �� F������e 5.18.

5.5.4

69 Shepherd tone element: � ��e����������� �f ��e �������� �����e �f ��e ������b����� ����e �� ��e 
S�e��e��� ���e �������� b� e��� ������e�� �� ��e ��ev���� ������. F������e 5.18 ���������e� ��w e��� 
������e�� �� ��������e��.

5.5.4

70 Continuous scale pitch illusion 1: T�e �����e� f��� ��e F������� �� G ����� (BWV 542) b� J.S. B��� 
���w� �� F������e 5.19 �� ����e�� ������� � �e������������ w��� �� �ee�� ����� �� ��e ������ �����. F����w ��e 
����e ���� ��� �� ���e���f� w�e��e� ��e ��w���� �eve��� �e��� ��e ��b�������� �� �e��� �f w���� ����ve ��e 
���e f����w����� ��e �e�� �� ��.

5.5.4

71 Continuous scale pitch illusion 2: T�e �����e� f��� ��e F������� �� G ����� (BWV 542) b� J.S. B��� 
���w� �� F������e 5.19 �� ����e�� ������� � �e������������ w��� �ee�� ����� �� ��e ������ �����. F����w ��e ����e 
���� ��� �� ���e���f� w�e��e� ��e ��w���� �eve��� �e��� ��e ��b�������� �� �e��� �f w���� ����ve ��e ���e 
f����w����� ��e �e�� �� ��.

5.5.4

72 Continuous scale pitch faked: T�e �����e� f��� ��e F������� �� G ����� (BWV 542) b� J.S. B��� ���w� 
�� F������e 5.19 �� ����e�� ������� �e������������ 1 (�� �ee�� �����) f�� ��e ������ �����, b�� ���� �������e� ��e 
����e ��������� ��e �����e� �� �������e � �e���� ���e ���� �� ����������� ��e��e�������� ������� �ee�� �����. T��� 
�� ����eve�� b� ������� � ������e� 4’ f�� ��e fi��� ��e��e�������� ����ve, ��e� � �����e� 8’ f�� ��e �e����� 
��e��e�������� ����ve, �� ���e��e���e 16’ f�� ��e ������ ��e��e�������� ����ve ���� � ������ b��b����e 32’ f�� ��e 
fi��� ��e��e�������� �eve���. I� ������� be ���e�� ���� ��e�e �ee��� ��ve ���ffe�e�� ���b�e� ���� ���e�����e� �� ��e 
���� �������e� ��e ��e���� �����b�e. Neve���e�e��, ��e ������ ��e��e�������� ����e �� we�� ���������e��.

5.5.4

73 Virtual pitch—chorale played normally: F����w����� ��e ��������e����� f��� R�e��e�e� q���e�� ��w����� ��e e��� 
�f Se����� 5.5.4, ���� ��e����������� ��e� ��e C�����e P�e����e “I�� ��f’ z� ����, He�� Je�� C�����” f��� ��e 
O����e�bü���e�� b� J.S. B��� (BWV 639), w���� �� ����e�� �� ��e N�ve��� E������� (e����e�� b� Iv�� ������� ���� 
�ev��e�� b� W���e� E�e��) �� ������e ���be� 41. C�����e ���be� 40, w���� �� ��������e��e�� b� R�e��e�e�, ��, 
������������ �� ��e N�ve��� E�������: “E� ��� ���� He�� ��� �����e� �e�“ (BWV 638), w���� ��� �� ���� ������e 
�e����� ���e ���� ���� �� ��� �����b�e f�� ���� ��e�����������. I� ���� ��e�����������, � �����e� f��� ��e 
������e �� �e�f���e�� ������� ��e ����� ���� �e��f���e ��e fi��� ���e ��������� (�����e� fl��e 8’, ��e� fl��e 
4’, ��z���� 2 2/3’, b����� fl��e 2’, ��e��e 1 3/5, ��������� 1 1/3, �e���è�e 1 1/7’ ����v�� 1’, ���� ���e 8/9’) f�� 
��e �e����� (� �e������������ ���� w����� ���b�b�� ��� be ��e�� �� � �e�f������e, b�� ��e ���� e�����e� ���� 
��e�����������).

5.5.4 & 
3.2.2

74 Virtual pitch organ chorale: I� ���� ��e�����������, ��e �����e� f��� ��e C�����e P�e����e ��e�� �� T����� 
73 ������ ������� ��e ���e ����� ���� �e��f���e ��e fi��� ���e ��������� f�� ��e �e�����, b�� ��e ����� ��e 
����e�� �� ��e f����w����� ����e�: �����e� fl��e 8’, ��e� fl��e 4’, ��z���� 2 2/3’, b����� fl��e 2’, ��e��e 1 3/5, 
��������� 1 1/3, �e���è�e 1 1/7’ ���� ����v�� 1’ ����� ���� ��e ���e 8/9’ (�e��f�������� ��e ����� ��������) 
�e�����. T�e� ��e ����������e�� �� �e��ve�� ���� ���e� b�������� b���� ��. T�e ���e �� ����� �e��e�v�b�e 
w�e� ��e ����� �e��f�������� ��e ��w ��������� ��e �e��ve��, eve� w�e� ���� ��e ��e �������� (��e �����) 
�e�����, ���� �� �� � �������� (��� � w���e ���be� �f ����ve� �w�� f��� ��e f������e����). W�e� ��e 
����������e�� �� �e��ve��, ��e ����� �f ��e �e����� �� ���ew��� ��b��������.

5.5.4 & 
3.2.2

75 Short impulse response: T��� �� ��e ������e �e�����e �f � ����� ������ ���v���e�� �����e�� �f D� D����� 
M����� �� e��b�e �eve�be������ ���v������� f�� � ����� T60.

6.1.4

76 Medium impulse response: T��� �� ��e ������e �e�����e �f � �e����� ��ze�� ����e ���v���e�� �����e�� �f 
D� D����� M����� �� e��b�e �eve�be������ ���v������� f�� � �e����� T60.

6.1.4

77 Long impulse response: T��� �� ��e ������e �e�����e �f � ������e ����e ���v���e�� �����e�� �f D� D����� 
M����� �� e��b�e �eve�be������ ���v������� f�� � ������ T60.

6.1.4
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78 Mono, stereo and surround sound: T��� ��e����������� �� f�� �e�������e ����e������. I� ���������e� ��w 
������ ��� be ����e�� �������e ��e �e��� ���� ��ve�� ������� b� ����������� ��e �������e f��� ���������� 
�� ��e�e������� �� ��������� ������ ����e������. T�e ������� ������ ��e ��e����� �f ���� ��e����������� f�� 
�e�������� �� ��e �� �� ���� CD. I� w�� ������������ �������e�� f�� T�e R���� S���e��’� S���e� S��e��e 
Ex��b����� “S��������e�� b� S�����” �� J��� 2001 b� �e�be�� �f T�e M���� Te���������� Re�e���� G����, 
De�����e�� �f E�e��������, U��ve����� �f Y����.

79 Tone used in the “mosquito” or “teen deterrent”: T�e ������ ��e�� f�� � ���q���� �� �ee� ��e�e��e�� �� 
� 16.8 ��Hz ���e w�ve. I� ���� ��e�����������, f��� ���e ���e� �������� �� ����ve� �� ��e ���q���� �ve�����e 
f�eq�e��� �f 16.8 ��Hz ��e ��e�e��e�� �� f����w�: 2.1 ��Hz, 4.2 ��Hz, 8.4 ��Hz ���� 16.8 ��Hz. PLE�SE NOTE: 
���� ���������e�� w��� fi��� ��e 16.8 ��Hz ���e ����e�����—be �������� w��� ��e ����e������ �eve�.

7.7

*The electrolaryngograph (or electroglottograph) is a device that monitors vocal fold vibration by measuring the electrical impedance 
between two electrodes that are placed externally on the neck at the level of the larynx. Listening to the output waveform from the 
electrolaryngograph (Lx) gives an appreciation of the sound source during speech and singing. Please note that there are high-
frequency artifacts associated with the Lx waveform which are particularly obvious when listening to it. Whilst these recordings can be 
low-pass filtered to remove these artifacts (this exercise is left to interested readers), any filtering is likely to alter the detailed shape of 
the Lx waveform due to the phase response of the filter. The Lx output is therefore presented in its “raw” form in these recordings to 
enable further analysis of the waveshape if desired. Measurement of the fundamental frequency (f0) of the Lx waveform, usually based 
on measuring the fundamental period (T0) and finding its reciprocal as f0  (1/T0), provides a reliable and accurate experimental 
method for finding the f0 in speech or singing. More details can be found in Baken (1987), Howard (1995, 1999), and Howard et al. 
(1990)—these references are listed at the end of Chapter 4.



479
%ALcons (Articulation Loss; 
consonants), 393, 404, 415

5.1 surround systems, 367

A
“A” weighting, 95, 96, 105
Absolute category-rating (ACR) 

test, 391
Absorption:

effects on early reflections, 
285–6

Helmholtz absorbers, 343, 344
materials, 339
porous absorbers, 339–41
resonant absorbers, 341–2
reverberant sound, 286–95, 297
room mode decay, 322
sound, 44
wideband absorbers, 343, 344, 

345
Acoustic bass, 273
Acoustic cues, 242, 244–52
Acoustic foldback, 319, 320
Acoustic impedance, 20
Acoustic models, 167–229
Acoustic pressure waveforms, 71, 

123, 132, 236
Acoustic reflex, 79, 106
Acoustic spatial filtering, 465–6
Acoustically large rooms, 336
Acoustically small rooms, 336
Active noise cancellation, 416, 

417
Acuity, loss, 101–2
Adaptive inverse filtering, 422
Adaptive quantization, 428
Adaptive quantizer, 430
Adiabatic gas law equation, 6
Aging, presbycusis, 89
Air absorption, effect of, 321–2

Air columns, see Bores
Air effects, sound, 5–7, 183, 

321–2
Airflow, instruments, 203–4
All-pass filter, 67
Ambience speakers, 367
American National Standards 

Institute, 131, 232
Amplitude, 20, 23, 34, 92, 93, 

191, 193, 234, 348–51
Amplitude reflection gratings, 

348–51
Anatomy, human, 74–83
Anechoic rooms, 169, 334
Anvil, 76
Aperiodic sound waves, 63–4, 131
Applications, of acoustics and 

psychoacoustics, 365
audio coding systems, 418

archetypical audio coder, 
419–20

entropy coding, 427–8
entropy coding stage, 424
information, carrying, 420–1
information measurement, 

424–5
psychoacoustic noise shaping, 

431–2
psychoacoustic quantization, 

432–3
psychoacoustic quantization 

stage, 428
quantization and adaptive 

quantization, 429–31
signal redundancy removal 

stage, 421–4
total information 

measurement, 425–7
critical listening room design, 

367

diffuse reflection room, 
376–81

energy-time considerations, 
369–70

IEC listening room, 368–9
loudspeaker arrangements, 

367–8
non-environment rooms, 

375–6
reflection-controlled rooms, 

370–3
reflection-free zones, 

absorption level required 
for, 373

reflection-free zones, 
absorption position for, 
373–5

filtering and equalization, 394
altering the sound balance in 

mixes, 400–1
correcting frequency response 

faults, 398–9
timbre modification, of sound 

sources, 399–400
mosquito units, 417–18
noise-reducing headphones, 415
psychoacoustic testing, 388

experimental design issues, 
389–90

psychoacoustic rating scales, 
390–2

speech intelligibility, 392–3
public address systems, 402

design example, 409–13
good speech intelligibility, 

requirements for, 407
intelligibility, loudspeaker 

effect on, 404–5
intelligibility, noise effect on, 

405–7

Index
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Applications, of acoustics 
and psychoacoustics 
(continued)

intelligibility, reverberation 
effect on, 403–4

more than one loudspeaker 
and delays, 413–15

reverberation, 402–3
speech quality measurement, 

methods for, 415
speaker directivity, achieving, 

408–9
pure-tone and speech 

audiometry, 381–8
teen buzz, 417–18

Arithmetic Coding, 428
Array loudspeakers, 408, 465

acoustic spatial filtering,  
465–6

Articulation index (AI), 415
Artificial reverberation, 321
Audio coding systems, 418

archetypical audio coder, 
419–20

entropy coding, 427–8
entropy coding stage, 424
information, carrying, 420–1
information measurement, 

424–5
psychoacoustic noise shaping, 

431–2
psychoacoustic quantization, 

432–3
psychoacoustic quantization 

stage, 428
quantization and adaptive 

quantization, 429–31
signal redundancy removal 

stage, 421–4
total information measurement, 

425–7
Audio compact disc, track listing 

for, 473–8
Audiogram, 382
Audiometric notch, 103
Auditory filter, 85, 87, 248
Auditory nerve, 83
Axial modes, 322–4

B
Backward adaptive predictor, 423
Backward adaptive quantizers, 

430
Backward masking, 263
Band-pass filter, 64, 65, 67, 68
Band-reject filter, 64
Bars

and panels, waves in, 10
bending (flexural) waves, 

12–14
quasi-longitudinal waves, 

10–11
transverse shear waves, 

11–12
percussion, 209

Basilar membrane, 81–2
Bass drum, 213
Bending waves, 12–14
Bernoulli effect, 203–4, 217
Binary Amplitude Diffuser, 350, 

464
Binaural stereo, 118
“Black Box” model, of musical 

instruments, 168–9
Blank audiogram, 382
Bone conduction audiometry, 384
Bonello criteria, 327–8
Bores (air columns), 198
Boundary effects:

inverse square law, 36–40
reflection:

bound-unbound boundaries, 
46–7

hard boundaries, 44–6
refraction, 42–4
standing waves, 49–55

Bounded to unbounded 
boundaries, sound 
reflection from, 46–7

Bowed string, sound source from, 
176–8

Brass instruments, 203–8
BS EN ISO 8253-1, 383

C
“C” weighting, 95
Capella singing, tuning in, 225–9

CD, see Compact disc
Center dialog speaker, 367
Central cluster, 405
Cents, 159, 164, 449–50
Chiff, 185
Chords, two-note, 150, 226
Chorus effects, electronic, 245
Circum-aural headphones, 384
Clarinet, 198, 199, 201, 202, 237, 

239, 243, 246
Clinical audiometer, 382
Close miking, 398–9
Cochlea, 79–80
Coding, perceptual, 264
Comb filtering, 48
Combination tones, 258
Comma free, 427
Compact disc (CD), 473
Comparison category-rating 

(CCR) test, 392
Complex Fourier series, 440–1
Complex sounds, loudness of, 

99–100
Complex waveforms, 59
Compression, 3, 185–8
Concert halls, 317–18
Concha, 75
Conical resonators, 198, 199
Consonance, 151–3, 154, 157
Constant beamwidth theory 

(CBT) arrays, 467
Constant directivity horns, 408, 

467–8
Constructive interference, 48,  

50
Contemporary pitch perception, 

theory of, 146–8
Continuous spectrum, 131
Controlled experimentation, 389
Controlled reflection technique, 

371
Convolution theorem, 442–3, 

461, 464
Correlated sound sources, 27, 

28–30
CQ, see Larynx closed quotient
Critical bands:

complex sounds, 99–100



Index 481
consonance and dissonance, 
151–3

definition, 74
ERB quadratic equation, 447
hearing system, 83–9
timbre, 242–4

Critical bands and timbre, 242–4
Critical distance, 295–7
Critical frequency, 334–6, 337

calculation, 336–9
Critical listening room design, 

367
diffuse reflection room, 376–81
energy-time considerations, 

369–70
IEC listening room, 368–9
loudspeaker arrangements, 

367–8
non-environment rooms, 375–6
reflection-controlled rooms, 

370–3
reflection-free zones, absorption 

level required for, 373
reflection-free zones, absorption 

position for, 373–5
Cues and timbre perception, 

244–52
Cut-off frequencies, 397–8
Cut-off region, 334–5
Cut-up, adjustment, 184
Cutting/rough tone, 247
Cymbal plates, 211

D
Damaged hearing, 101–4
Damping, 352
DBHL, 382
DCC, see Digital compact 

cassette
Dead room, 299
Decay, 69, 70, 175, 306, 316–17
Decibels, 34–6
Degradation category-rating 

(DCT) test, 391–2
Degradation mean opinion score 

(DMOS), 391, 392
Delay, 27–8, 114, 116–17, 279, 

413

Delay stereo, 116–17
Dependent variable, 392
Design, room acoustics, 367–81
Destructive interference, 48, 50
Deutsch, Diana, 264
DFT, see Discrete Fourier 

transform
Diagnostic rhyme test (DRT), 393
Difference limen, see Just 

noticeable difference
Difference tone, 258, 259
Diffraction, 55–8, 358–62
Diffuse field region, 335–6
Diffuse reflection room, 369, 

376–81
Diffuser design, 464
Diffusion materials, 345

amplitude reflection gratings, 
348–51

diffusers, working, 346–7
discussion, 347–8

Digital compact cassette (DCC), 
264

Direct sound, 279–81
Direct Stream Transfer (DST), 

419
Direction perception, 107–18
Directivity, reverberant sound, 

297–9
Discrete Fourier transform (DFT), 

445–6
Displacement antinodes, see 

Velocity antinodes
Displacement nodes, see Velocity 

nodes
Dissonance, 151–3, 153–8
DMOS, see Degradation mean 

opinion score
Dolby AC3, 419
Domain representations, 61, 62, 

64
Double bass, 81, 131, 170, 180, 

267
Double-glazing, 353, 355
DRT, see Diagnostic rhyme test
Drum heads, 212
DST, see Direct Stream Transfer
DTS, 419

Duration of sound, 100, 149

E
Ear anatomy, 75–83
Ear canal insert earphones, 384
Eardrum, 75
Early decay time (EDT), 316–17
Early reflections, 281–5

absorption effects on, 285–6
and performer support, 318–20

Edgetone, 183
EDT, see Early decay time
Electronic filters, 142
Ellis, Alexander, 248
Enclosed spaces, acoustics of, 279

absorptions effects, 285–6
air absorption, effect of, 321–2
critical distance, 295–7
direct sound, 279–81
early decay time, 316–17
early reflections, 281–5
lateral reflections, 317–18
reverberant sound, 286–95

source directivity effects on, 
297–9

reverberation faults, 305–8
reverberation time, 299

calculation and prediction, 
300–2

characteristics, 315–16
design, 312–15
equation, 304–5
room size effects on, 302–3
variation with frequency, 

308–9
with mixed surface, 310–12

sound isolation, 351–5
standing waves, 322

Enclosure diffraction effects, 
358–62

Energy-time considerations, 
369–70

Enharmonics, 159
Entropy coding, 427–8
Entropy coding stage, 420, 424
Equal loudness contour, 93, 94
Equal-tempered tuning, 163–5, 

175, 206, 225
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Equalisation, 394, 397–8
Equivalent open window area, 310
Equivalent rectangular bandwidth 

(ERB), 85, 248
ERB equation, solving, 447
ERB, see Equivalent rectangular 

bandwidth
Errors listeners, 393
Even function, 439
Expander/gates, 383–5
Experimental design issues, 

389–90
Exposure times, noise, 104–5

F
f0, see Fundamental frequency
Far-field assumptions, 460
Fan-shaped hall, 317
“Ff” sound, 183, 231
Filter time responses, 64, 65–8

time and frequency 
representations, 69–72

time responses, 69
Filtering and equalization, 394

altering the sound balance in 
mixes, 400–1

correcting frequency response 
faults, 398–9

timbre modification, of sound 
sources, 399–400

Filters, 64
band-pass, 64, 65, 67, 68
band-reject, 64
centre frequency, 86, 447
electronic, 142
equalisation/tone control, 

397–8
filter banks, 147
frequency response, 64–5
high-pass, 64
low-pass, 64, 397, 398, 442
masking, 86, 260
time responses, 64, 65–8
types, 64–5

Finger holes, 192
Fingering instruments, 193
First order mode, 55
Flanking paths, 354–5

Fletcher–Munson curves, 94
Flexural waves, see Bending  

waves
Floating room, 354
Flow-controlled valve, 192, 197
Flue pipes, 182–91
Flute, 123, 125, 192, 194, 237, 

239, 243
Flutter echoes, 307, 308
Focusing surfaces, 282
Foldback, 318, 319
Formants, 220–5
Forward adaptive predictor, 423
Forward adaptive quantizers, 430
Forward masking, 263
Four-part harmony, 158, 226
Fourier theory, 59–60
Fourier transform, 437–8

complex Fourier series, 440–1
convolution theorem, 442–3
discrete Fourier transform, 

445–6
example, 443–5
Fourier analysis, 439–40
Fourier’s theorem, 437–8

frequency spectrum, 439
odd and even functions, 439

non-periodic signals, frequency 
analysis of, 441–2

Fourier transform pair, 60, 442
Free field, see Free space
Free space, 47, 169
French horn, 238, 240, 243
Frequency:

air absorption, 321–2
analysis, 81

of non-periodic signals, 
441–3

Bonello criteria, 327–8
definition, 15
diffraction, 56, 57
domain representations, 61, 

62, 64
filter responses, 86, 87
interference, 48
and pressure sensitivity ranges, 

89–91
proximity grouping, 265

ratios, 128, 129, 159, 163, 164, 
449

relative loudness, 94
response, 64, 398–9
reverberation time variation, 

308–9
sine waves, 14–15, 59
see also Critical 

frequencyFundamental 
frequencyModal 
frequencyMode frequency

Frequency domain processing, 
423

Frequency ratios, 449–50
Fundamental frequency, 122–4

G
Gases, sound velocity, 6–8
Gedackt 8’ ship, 191, 192, 238, 

243
Glottal airflow, 218
Glottis, 218
Golf ball and spring model, 3–5
Golomb Rice Codes, 428
Graphic equalizer, 398
Grouping:

by good continuation, 265
by proximity, 265
by similarity, 265

Grouping illusion, notes, 264–70
Guitar, 180–1

H
Haas effect, 115–16
Hair cells, 83, 133
Hammer, 76
Hard boundaries, 44–6, 49–53
Hard reed, 195, 196
Harmonic number, 125
Harmonics:

consonance/dissonance, 151–3
definition, 127
frequency ratios, 127–9
musical notes between, 127–31
square wave, 61
timbre perception, 236, 242, 

244
and Western harmony, 150–1
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Harmony:
hearing notes, 150–8
hearing pitch, 131–50
musical notes, 122–31
tuning systems, 158–65

Hautbois, 237, 238
Head, sound localization, 112
Headphones, 114, 384

noise-reducing headphones, 
415–16

Hearing acuity, loss of, 101–2
Hearing sensitivity, loss of, 101
Hearing system:

anatomy, 74
inner ear function, 79–83
middle ear function, 76–9
outer ear function, 75–6

critical bands, 83–9
frequency and pressure 

sensitivity ranges, 89–91
loudness perception, 91–4

of complex sounds, 99–100
measurement, 95–6
of simple sounds, 96–8

noise-induced hearing loss, 
101–4

integrated noise dose,  
104–6

protection, 106–7
sound source direction, 

perception of, 107
Haas effect, 115–16
interaural intensity 

difference, 111–13
interaural time difference, 

107–11
ITD and IID trading, 114–15
pinnae and head movement 

effects, 111–14
stereophonic listening, 

116–19
Helmholtz absorbers, 343, 344
High-pass filter, 64, 394
Huffman code, 427, 428

I
Idiophones, 209
IEC listening room, 368–9

IID, see Interaural intensity 
difference

Illusions, 264–74
Impedance, 18–21, 76
Impulse, 208
Incus, 76, 77
Independent partitions, 353–4
In-ear monitoring, 319
Inharmonicity, 174, 175
Inner ear function, 79–83
Input/system/output model, 168, 

169, 171, 222
Instruments, see Musical 

instruments
Integrated noise dose, 104–6
Intensity:

direct sound, 279–81
early reflections, 281–5
interaural difference, 111–13
sound intensity level, 21–2

Intensity stereo, 117
Interaural intensity difference 

(IID), 111–13
and ITD trading, 114–15

Interaural time difference (ITD), 
107–11

and IID trading, 114–15
Interference, 47–9
Internet, 264, 418
Inter-spike interval histograms, 

145, 146
Intervals, musical, 127–31,  

153–8
Inverse square law, 36–40
Isolation, of sound, 351–5
ITD, see Interaural time 

difference

J
JND, see Just noticeable 

difference
Just diatonic scale, 161–3
Just noticeable difference (JND), 

137

K
Kettledrum, 214, 215
Keyboards, 158, 163, 170, 175

L
Leq measurement, 96
Lab, The, 376
Languid, 182, 183, 185
Larynx, 217
Larynx closed quotient (CQ),  

218
Lateral reflections, 317–18
Leaky bucket model, 291
LEDE, see Live end dead end
LFE, see Low-frequency effects
Linear superposition, 42, 49
Linearity and superposition, 461
Lips, embouchure, 194
Live end dead end (LEDE), 370
Localization, sound, 75
Logarithms, 34, 179
Logatom testing, 393
Long-term average spectra (LTAS), 

233
Longitudinal wave, 3
Lossless audio coding systems, 

418–19
Lossy audio coding systems, 419
Loud sounds, 106, 107
Loudness, 231
Loudness perception, 91–4

of complex sounds, 99–100
measurement, 95–6
of simple sounds, 96–8

Loudspeakers, 49, 50, 52, 367–8
Low-frequency effects (LFE), 368
Low-pass filter, 64, 67
LTAS, see Long-term average 

spectra
Lute, 171, 180, 181

M
Malleus, 76, 77
Maskee, 260, 261, 263
Masking, 86, 260–4
Mastoid prominence, 384
Mean free path, 300, 302
Mean opinion score (MOS), 391
Membranophones, 209
Meridian Lossless Packing, 419
Microphones, 117, 398–9
Middle ear function, 76–9
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Millington–Sette equation, 311, 
457

Minimum beamwidth frequency, 
470

Mixed surfaces, 310–12
Mixes, sound balance in, 400–1
Mixture organ stop names, 256
Mixtures, 253
Modal frequency, 322
Modal length, 330, 331
Modal region, 335
Mode frequency, 199, 200, 

209–10, 214, 216
Moderate hearing loss, 386
Modified rhyme test (MRT), 393
MOS, see Mean opinion score
Mosquito units, 417–18
MP3 systems, 264
MRT, see Modified rhyme test
Music hearing, in different 

environments, 277
absorption materials, 339

Helmholtz absorbers, 343, 
344

porous absorbers, 339–41
resonant absorbers, 341–2
wideband absorbers, 343, 

344, 345
diffusion materials, 345

amplitude reflection gratings, 
348–51

diffusers, working, 346–7
discussion, 347–8

enclosed spaces, acoustics of, 
279

air absorption, effect of, 321–2
critical distance calculation, 

295–7
direct sound, 279–81
early decay time, 316–17
early reflections, 281–5
early reflections and 

performer support, 318–20
early reflections, absorption 

effect on, 285–6
lateral reflections, 317–18
reverberant sound, 286–95, 

297–9

reverberation faults, 305–8
reverberation time, 299–304, 

308–16
reverberation time equation, 

304–5
enclosure diffraction effects, 

358–62
loudspeaker output, room 

boundaries effect on, 356–8
room modes and standing 

waves, 322
acoustically large rooms, 336
acoustically small rooms, 336
axial modes, 322–4
Bonello criteria, 327–8
critical frequency, 334–9
decay time, 329–34
modes, behavior of, 329
oblique modes, 325–6
tangential modes, 324–5
universal modal frequency 

equation, 326–7
sound isolation, 351

achieving ways, 352–3
flanking paths, 354–5
independent partitions, 

353–4
Musical instruments, 167

“black box” model, 168–9
brass, 203–8
fundamental frequency ranges, 

169, 170
percussion, 208

sound modifiers in, 209–16
sound source in, 208–9

speaking and singing voice, 216
sound modifiers, in singing, 

219–25
sound source, in singing, 

217–19
tuning in capella singing, 

225–9
stringed, 170

bowed string, sound source 
from, 176–8

plucked string, sound source 
from, 172–3

sound modifiers in, 178–81

struck string, sound source 
from, 173–6

timbre, 231–57
wind, 181

brass instruments, 203–8
organ flue pipes, 182–91
organ reed pipes, 194–7
woodwind flue instruments, 

192–4
woodwind reed instruments, 

197–202
Musical intervals, 127–31, 153–8
Musical tones, 247

acoustic pressure waveforms, 
122, 123, 124–5

fundamental frequency, 122–4
grouping illusions, 264–70
and harmonics, 127–31
hearing, 150

consonance and dissonance, 
151–3

harmonics and development 
of Western harmony, 150–1

musical intervals, 153–8
Mutation stops, 254, 256–7

N
Nasal harmonics, 243
National Physical Laboratory 

(NPL), 417
Nerve firing, 83, 144, 145
Nicking, flue organ pipes, 184–5
Noise shaping, 428, 431
Noise-induced hearing loss, 101–4

integrated noise dose, 104–6
protection, 106–7

Noise-reducing headphones, 
415–17

Non-environment rooms, 369, 
375–6

Non-harmonic sounds, 136
Non-linear quantization, see 

Non-uniform quantization
Non-periodic signals, frequency 

analysis of, 441–2
Non-periodic sound waves, 

spectrum of, 63–4
Non-simultaneous masking, 263
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Non-uniform quantization, 431
Norris–Eyring reverberation 

formula, 301, 304–5, 310, 
453

Norris–Eyring reverberation time 
equation, 456, 457

Notch Filters, 394
Note envelope, 234–7
Note grouping illusions, 264–70
Note offset phase, 236
Note onset phase, 236, 237–42
NPL, see National Physical 

Laboratory

O
On the Sensations of Tone, 247
Oblique modes, 325–6
Oblique modes, 325–6

decay time of, 330–4
Oboe, 196, 198, 237, 239, 243
Octave illusion, 264, 265
Odd function, 439
Offset phase, 235, 236
Ohm’s second (acoustical) law, 

135
Onset phase, 234, 235, 236
Open pipes, 191, 253
Organ flue pipes:

sound modifiers in, 185–91
sound source in, 182–5

Organ of Corti, 83
Organ pipes, 182, 185, 191
Organ reed pipes:

sound modifiers in, 196–7
sound source in, 194–6

Organum, 151
Orgelbuchlein, 274
Ossicles, 76, 77
Outer ear function, 75–6
Output, 168–9, 179, 181, 191, 

215, 218, 222, 224
Overblown mode, 184, 191, 193, 

194, 198, 199
Overtone, 126

P
Pain, threshold of, 24, 89, 90, 91
Parametric equalizer, 398

Partials of the waveform, 61
Partitions, sound isolation, 353–4
Passive noise cancellation, 416, 

417
Pedal mixtur, 257
Perceptual coding systems, 264
Percussion instruments, 208

sound modifiers in, 209–16
sound source in, 208–9

Performer support, 318–20
Perilymph fluid, 80
Periodic sound waves, spectrum 

of, 60–2
Periodic waveform, 122
Perturbation theory, 221
Phase locking, 144
Phase velocity, 12
Phon scale, 94
Piano, 169, 170, 173–6
Piccolo, 194
Pinnae, 111–14
Pipe organ, 245, 253, 256
Pitch illusions, 270–4
Pitch perception:

basilar membrane, 133, 141, 
142, 144, 146–7

contemporary theory, 146–8
duration effect, 149
fundamental frequency, 149
illusions, 270–4
non-harmonic sounds, 136
place theory, 133–42
secondary aspects, 148–50
temporal theory, 142–6
timbre, 231–2

Place theory of pitch perception, 
133–7, 142

problems with, 137–42
Plucked instruments, 180
Plucked string, sound source 

from, 172–3
Point sources, array of, 459–61

progressive phase shift, effect 
of, 464

sampling, effect of, 461–3
visible region, 461

Polar pattern, surface size and 
illumination effect on, 459

array loudspeakers, 465
acoustic spatial filtering, 

465–6
beamwidth, mouth/array, size 

effect on, 468–70
minimum beamwidth 

frequency as size function, 
470

constant directivity horns, 
467–8

diffuser design, 464
point sources, array of, 459–61

progressive phase shift, effect 
of, 464

sampling, effect of, 461–3
visible region, 461

Pop concert effect, 43
Popping frequency, 205
Porous absorbers, 339–41
Precedence effect,  

see Haas effect
Preludio, 266
Presbyacusis, 89, 91
Presbycusis, 89
Pressure:

sound wave nature, 3
standing wave components, 51
see also CompressionSound 

pressure level
Pressure antinodes, 52
Pressure node, 52
Pressure waves and sound 

transmission, 2
bars and panels, waves in, 

10–14
sound velocity in air, 5–8
sound waves, 3

relationship between 
pressure, velocity and 
impedance in, 18–21

velocity, 3–5
wavelength and frequency of, 

14–17
wavenumber of, 17–18

transverse wave, 9
velocity, 9–10

Pressure-controlled valves, 197, 
203
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Protection of hearing, 106–7
proximity grouping, 265
Pseudo-lateral diffuse reflections, 

318
Psychoacoustic models, 432
Psychoacoustic noise shaping, 

431–2
Psychoacoustic quantization 

stage, 420, 428, 432–3
Psychoacoustic rating scales, 390–2
Psychoacoustic testing, 388

experimental design issues, 
389–90

psychoacoustic rating scales, 
390–2

speech intelligibility, 392–3
Psychoacoustics, definition of, 74
Public address systems, 402

design example, 409–13
intelligibility:

loudspeakers effect on, 404–5
noise effect on, 405–7
reverberation effect on, 403–4

good speech intelligibility, 
requirements for, 407

measuring speech quality, 
methods for, 415

more than one loudspeaker and 
delays, 413–15

reverberation, 402–3
speaker directivity, achieving, 

408–9
Pure-tone audiometry, 382, 386
Pure tones:

and speech audiometry, 381–8
perception of, 258–60

Pythagoras’ theorem, 50
Pythagorean tuning, 158–61

Q
Quadratic residue diffuser, 348
Quantization and adaptive 

quantization, 429–31
Quasi-longitudinal waves, 10–11

R
R, see Room constant
Radiation, sound, 181

Rarefaction, 3, 186, 187, 188
Recorders, 192, 193, 197, 198
Reflection:

bounded to unbounded 
boundaries, 46–7

hard boundaries, 44–6
standing waves, 49–53, 186

Reflection controlled rooms, 369, 
370–3

Reflection-free zones (RFZ), 370
absorption level required for, 

373
absorption position for, 373–5

Refraction, 42–4
Regal, 237, 238
Register holes, recorder, 194
Reissner’s membrane, 80, 81
Relative loudness, 94
Repetition pitch, 149
Resonant absorbers, 341–2
Resultant bass, 273
Reverberant sound, 286–95

balance to direct sound, 289–90
behavior, 288–9
level in steady state, 290–5

Reverberation faults, 305–8
Reverberation time, 299

calculation and prediction, 
300–2

characteristics, 315–16
design, 312–15
equation, 304–5
room size effects on, 302–3
variation with frequency, 308–9
with mixed surface, 310–312

Reverberation time equation, 
derivation of, 451–4

for different frequencies and 
surfaces, 455–7

RFZ, see Reflection free zone
Room boundaries, on loudspeaker 

output, 356–8
Room constant, 292, 294
Room modes and standing waves, 

322
acoustically large rooms, 336
acoustically small rooms, 336
axial modes, 322–4

decay time of, 329–30, 333, 
334

Bonello criteria, 327–8
critical frequency, 334–6

calculation, 336–9
modes, behavior of, 329
oblique modes, 325–6

decay time of, 330–4
tangential modes, 324–5

decay time of, 330–4
universal modal frequency 

equation, 326–7

S
Sabine equation, 455
Sabine formula, 304, 305
Sabine, Wallace Clement, 300, 

304
Scattering, of sound, 58
Schroeder frequency, 336
SDS, see Speech Discrimination 

Score
Second action limit, 103–4
“Sensorineural hearing loss”, 384
Septième, 243
Sesquialtera, 257
Shear modulus, 11
Shepherd tone, 270
Shift theorem, 461
Shoebox hall, 317
Side information, 420, 423, 430
Signal information, 420
Signal redundancy removal stage, 

419, 421–4
Signal to masking ratio (SMR), 

433
SII, see Speech intelligibility index
SIL, see Sound intensity level
Simple sounds, loudness of, 96–8
Simple tones, 247
Simultaneous masking, 263
Sine waves, 14–15, 16, 19
Singer’s formant, 224
Singing voice, 169, 216–29
Single glazing, 353
Sinusoidal excitation, 14
SMR, see Signal to masking ratio
Snare drum, 213
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Soft reed, 195, 198
Sony Super Bit Mapping, 432
Sony-SDDS, 419
Sound intensity, definition of,  

37
Sound intensity level (SIL), 21–2
Sound interactions, 40–1

absorption, 44
diffraction, 55–8
hard boundaries, reflection 

from, 44–6
interference, 47–9
refraction, 42–4
scattering, 58
standing waves, 49–55
superposition, 41–2
unbounded boundaries, 

reflection from, 46–7
Sound isolation, 351

flanking paths, 354–5
independent partitions, 353–4
ways of achieving, 352–3

Sound modifiers, 168
in organ flue pipes, 185–91
in organ reed pipes, 196–7
in percussion instruments, 

209–16
in singing, 219–25
in stringed instruments, 

178–81
Sound power level (SWL), 23
Sound pressure, 24
Sound pressure level (SPL), 23–6, 

410, 411, 412, 414
Sound source, 168

from bowed string, 176–8
in organ flue pipes, 182–5
in organ reed pipes, 194–6
in percussion instruments, 

208–9
from plucked string, 172–3
in singing, 217–19
from struck string, 173–6

Sound source direction, 
perception of, 107

Haas effect, 115–16
interaural intensity difference, 

111–13

interaural time difference, 
107–11

ITD and IID trading, 114–15
pinnae and head movement 

effects, 111–14
stereophonic listening, 116–19

Sound waves:
nature, 3, 4
relationship between pressure, 

velocity and impedance in, 
18–21

velocity, 3–5
wavelength and frequency of, 

14–17
wavenumber of, 17–18

Speaking and singing voice, 216
sound modifiers, in singing, 

219–25
sound source, in singing, 

217–19
tuning in capella singing, 225–9

Spectra, analyzing, 64
filter time responses, 65–8
filters, 64–5
time and frequency 

representations, 69–72
time responses, 69

Spectrogram, 69, 234
Speech audiometry, 388
Speech Discrimination Score 

(SDS), 388
Speech intelligibility, 392–3
Speech intelligibility index (SII), 

415
Speech quality measurement, 

methods for, 415
Speech Reception Threshold 

(SRT), 388
Speech transmission index (STI), 

415
SPL, see Sound pressure level
Spring-loaded output key, 383
SRT, see Speech Reception 

Threshold
Standing waves, 49–55
Stapes, 76
Steady-state phase, 235, 236
Stereophonic listening, 116–19

STI, see Speech transmission 
index

Stiffness-controlled isolation 
region, 352

Stirrup, 76
Streaming, see Grouping
Striations, 249
Stringed instruments, 170

bowed string, sound source 
from, 176–8

plucked string, sound source 
from, 172–3

sound modifiers in, 178–81
struck string, sound source 

from, 173–6
Struck string, sound source from, 

173–6
Subjective testing, 393
Summation, 34
Superposition, 41–2, 60, 187
Supra-aural headphones, 384
Surround speakers, 367–8
SWL, see Sound power level
Synthetic sounds, 216

T
Tangential modes, 324–5

decay time of, 330–4
Tap resonances, 179
Tchaikovsky’s 6th symphony, 266
Teen buzz, 417–18
Teen deterrents, 417
Temaperature, 7–8, 42–3
Temporal theory of pitch 

perception, 142–6
problems with, 146

Tenor saxophone, 237, 239, 243
Ternary diffuser, 464
Third order mode, 55
Threshold of hearing, 24, 91, 97, 

382, 431
Tierce, 243
Timbre, 124, 231, 232

and acoustic cues, 244–52
acoustics of, 233

note envelope, 234–7
note onset, 237–42

and critical bands, 242–4
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Timbre (Continued)
deceiving the ear, 258

masking, one sound by 
another, 260–4

note grouping illusion, 
264–70

pitch illusions, 270–4
pure tones, perception of, 

258–60
modification, 399–400
pipe organ, 253–7
psychoacoustics:

critical bands and timbre, 
242–4

cues and timbre perception, 
244–52

sound source modification, 
399–400

synthesizer as pipe organ, 
253–7

Time:
frequency domains, 58–9

fourier theory, 59–60
non-periodic sound waves, 

spectrum of, 63–4
periodic sound waves, 

spectrum of, 60–2
phase, effect of, 62

see also Reverberation time
Time domain effects, 396
Time domain prediction, 422
Timpani, 214
Tinnitus, noise-induced, 102
Tom-toms, 213, 214
Tone-hole lattices, 199
Tosca, 240
Track listing, for audio compact 

disc, 473–8
Transverse modes, 209–10
Transverse shear waves, 11–12
Transverse wave, 9

velocity, 9–10
Tristimulus diagram, 245
Trombone, 207, 240, 241
Trompette, 237, 238

Trumpet, 238, 240, 246
Tuba, 207
Tuba, 239, 240, 243
Tuning systems, 158

equal tempered tuning, 163–5
just tuning, 161–3
Pythagorean tuning, 158–61

Turbulent airflow, 183
Two note chords, 131, 155, 157
Two-dimensional standing wave, 

56
Tympanic membrane, 75–6, 78

U
Unbounded boundaries, 46–7
Uncorrelated sound sources, 

27–8, 30–4
Universal modal frequency 

equation, 326–7

V
Velocity antinodes, 172
Velocity components, 19, 53
Velocity nodes, 171–2
Vibration:

strings, 9, 171
vocal Folds, 217–19, 222, 226

Vibrato, 219
Viola, 170, 179–80, 246
Violin, 124, 170, 178–9, 181, 

239, 241
Virtual pitch, 137
Visible region, of array of points, 

461, 462, 463
Vittoria, 240, 241
Vocal tract, 217, 219, 220, 221, 

222, 223, 224
cross-section of, 217

Voice, see Singing voice
Voicing, 185, 191, 194, 199
Volley firing principle, 144
Vowels, 220, 221, 222, 223

W
Wavelength, 14–17

clarinet, 201
guitar, 180
lute, 180–1
reed organ pipes, 182
sawtooth, 178
saxophone, 201–2
trombone, 207–8

Wavenumber, of sound waves, 
17–18

Western harmony and harmonics, 
150–1

Western music, 127, 151, 158, 
228

White noise, 262, 423
Wideband absorbers, 343, 344, 

345
Wiener–Khinchin theorem, 461, 

464
Wind instruments, 181

brass instruments, 203–8
organ flue pipes:

sound modifiers in, 185–91
sound source in, 182–5

organ reed pipes:
sound modifiers in, 196–7
sound source in, 194–6

woodwind flue instruments, 
192–4

woodwind reed instruments, 
197–202

Woodwind flue instruments, 
192–4

Woodwind instruments, 198, 199, 
237

Woodwind reed instruments, 
197–202

X
Xylophone, 209, 211

Y
Young’s modulus, 5, 8
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